22. Worbng bitedimath Write two different cubic functions whose graphs pass through the points $(-3,0),(-1,0)$, and $(2,6)$.
23. Thorstrmereonse How many points do you need to determine a quartic function? a quintic (fifth-degree) function? Justify your answers.
24. Challenge Substitute the expressions $k, k+1, k+2, \ldots, k+5$ for x in the function $f(x)=a x^{3}+b x^{2}+c x+d$ to generate six equally-spaced ordered pairs. Then show that third-order differences are constant.

PROBLEM SOLVING

EXAMPLE 3
on p. 395
for Ex. 25

EXAMPLE 4
on p. 396
for Exs. 26-28
25. GEOMETRY Find a polynomial function that gives the number of diagonals d of a polygon with n sides.

Number of sides, \boldsymbol{n}	3	4	5	6	7	8
Number of diagonals, \boldsymbol{d}	0	2	5	9	14	20

26. AVIATION The table shows the number of active pilots (in thousands) with airline transport licenses in the United States for the years 1997 to 2004. Use a graphing calculator to find a polynomial model for the data.

Years since 1997, \boldsymbol{t}	0	1	2	3	4	5	6	7
Transport pilots, \boldsymbol{p}	131	135	138	142	145	145	144	145

TEXAS @Homeduptublerfosqikoibyehequlaticgabzezprat cdarszone.com
27. MULTI-STEP PROBLEM The table shows the average U.S. movie ticket price (in dollars) for various years from 1983 to 2003.

Years since 1983, \boldsymbol{t}	0	4	8	12	16	20
Movie ticket price, \boldsymbol{m}	3.15	3.91	4.21	4.35	5.08	6.03

a. Use a graphing calculator to find a polynomial model for the data.
b. Estimate the average U.S. movie ticket price in 2010.
c. In which year was the average U.S. movie ticket price about $\$ 4.50$?
28. Sindrabironse Based on data collected from friends, you estimate the cumulative profits (in dollars) after each of six months for two potential businesses. Find a polynomial function that models the profit for each business. Which business will yield the greatest long-term profit? Why?

Yard work	Month, t	1	2	3	4	5	6
	Profit, p	30	210	410	680	1070	1630
Pet care	Month, t	1	2	3	4	5	6
	Profit, p	30	50	220	540	1010	1630

