- **22. ADPRASE ENDSONNATH** Write two different cubic functions whose graphs pass through the points (-3, 0), (-1, 0), and (2, 6).
- **23. ACTIONS THE SECONSE** How many points do you need to determine a quartic function? a quintic (fifth-degree) function? *Justify* your answers.
- **24. CHALLENGE** Substitute the expressions k, k + 1, k + 2, ..., k + 5 for x in the function $f(x) = ax^3 + bx^2 + cx + d$ to generate six equally-spaced ordered pairs. Then show that third-order differences are constant.

PROBLEM SOLVING

EXAMPLE 3 on p. 395 for Ex. 25 **25. GEOMETRY** Find a polynomial function that gives the number of diagonals *d* of a polygon with *n* sides.

Number of sides, n	3	4	5	6	7	8
Number of diagonals, d	0	2	5	9	14	20

TEXAS @Homesicafactolerforpikiblehelpolaintenterformet.com

example 4 on p. 396

for Exs. 26–28

26. AVIATION The table shows the number of active pilots (in thousands) with airline transport licenses in the United States for the years 1997 to 2004. Use a graphing calculator to find a polynomial model for the data.

Years since 1997, t	0	1	2	3	4	5	6	7
Transport pilots, p	131	135	138	142	145	145	144	145

TEXAS @Homevilatorblerforgkibleheteebingsbelonet.com

MULTI-STEP PROBLEM The table shows the average U.S. movie ticket price (in dollars) for various years from 1983 to 2003.

Years since 1983, t	0	4	8	12	16	20
Movie ticket price, m	3.15	3.91	4.21	4.35	5.08	6.03

- **a.** Use a graphing calculator to find a polynomial model for the data.
- **b.** Estimate the average U.S. movie ticket price in 2010.
- c. In which year was the average U.S. movie ticket price about \$4.50?
- 28. A shorts reference Based on data collected from friends, you estimate the cumulative profits (in dollars) after each of six months for two potential businesses. Find a polynomial function that models the profit for each business. Which business will yield the greatest long-term profit? Why?

								1.000
	Yard work	Month, t	1	2	3	4	5	6
		Profit, p	30	210	410	680	1070	1630
	Pet care	Month, t	1	2	3	4	5	6
		Profit, p	30	50	220	540	1010	1630

