CUBIC REGRESSION In Examples 1 and 3, you found a cubic model that exactly fits a set of data points. In many real-life situations, you cannot find a simple model to fit data points exactly. Instead, you can use the regression feature of a graphing calculator to find an n th-degree polynomial model that best fits the data.

Example 4 SEME andaconilupplabllirfitep Problem

SPACE EXPLORATION The table shows the typical speed y (in feet per second) of a space shuttle x seconds after launch. Find a polynomial model for the data. Use the model to predict the time when the shuttle's speed reaches 4400 feet per second, at which point its booster rockets detach.

x	10	20	30	40	50	60	70	80
y	202.4	463.3	748.2	979.3	1186.3	1421.3	1795.4	2283.5

Solution

STEP 1 Enter the data into a graphing calculator and make a scatter plot. The points suggest a cubic model.

STEP 3 Check the model by graphing it and the data in the same viewing window.

STEP 2 Use cubic regression to obtain this polynomial model:
$y=0.00650 x^{3}-0.739 x^{2}+49.0 x-236$

```
CubicReg
    y=a x 3+bx 2+cx+d
    a=.0065012626
    b}=-.739366883
    c=48.95620491
    d= -235.8857143
```

STEP 4 Graph the model and $y=4400$ in the same viewing window. Use the intersect feature.

- The booster rockets detach about 106 seconds after launch.

AinimatedAlgebra at classzone.com

Guided Practice for Example 4

Use a graphing calculator to find a polynomial function that fits the data.
5.

x	1	2	3	4	5	6
$f(x)$	5	13	17	11	11	56

6.

x	0	2	4	6	8	10
$f(x)$	8	0	15	69	98	87

