EXAMPLE 2 Find finite differences

The first five triangular numbers are shown below. A formula for the $\boldsymbol{n t h}$ triangular number is $f(n)=\frac{1}{2}\left(n^{2}+n\right)$. Show that this function has constant second-order differences.

Solution

Write the first several triangular numbers. Find the first-order differences by subtracting consecutive triangular numbers. Then find the second-order differences by subtracting consecutive first-order differences.

Each second-order difference is 1 , so the second-order differences are constant.

GUIDED PrACTICE for Examples 1 and 2

Write a cubic function whose graph passes through the given points.

1. $(-4,0),(0,10),(2,0),(5,0)$
2. $(-1,0),(0,-12),(2,0),(3,0)$
3. (2) GEOMETRY Show that $f(n)=\frac{1}{2} n(3 n-1)$, a formula for the nth pentagonal number, has constant second-order differences.

PROPERTIES OF FINITE DIFFERENCES In Example 2, notice that the function has degree two and that the second-order differences are constant. This illustrates the first of the following two properties of finite differences.

KEY CONCEPT

For Your Notebook

Properties of Finite Differences

1. If a polynomial function $f(x)$ has degree n, then the n th-order differences of function values for equally-spaced x-values are nonzero and constant.
2. Conversely, if the n th-order differences of equally-spaced data are nonzero and constant, then the data can be represented by a polynomial function of degree n.

The second property of finite differences allows you to write a polynomial function that models a set of equally-spaced data.

