5.9 Write Polynomial Functions and Models 2A.3.B; P.3.B

Before
You wrote linear and quadratic functions. You will write higher-degree polynomial functions. So you can model launch speed, as in Example 4.

Key Vocabulary

- finite differences

You know that two points determine a line and that three points determine a parabola. In Example 1, you will see that four points determine the graph of a cubic function.

EXAMPLE 1 Write a cubic function

Write the cubic function whose graph is shown.

Solution

STEP 1
Use the three given x-intercepts to write the function in factored form.

$$
f(x)=a(x+4)(x-1)(x-3)
$$

STEP 2 Find the value of a by substituting the coordinates of the fourth point.

$$
\begin{aligned}
-6 & =a(0+4)(0-1)(0-3) \\
-6 & =12 a \\
-\frac{1}{2} & =a
\end{aligned}
$$

- The function is $f(x)=-\frac{1}{2}(x+4)(x-1)(x-3)$.

CHECK Check the end behavior of f. The degree of f is odd and $a<0$. So $f(x) \rightarrow+\infty$ as $x \rightarrow-\infty$ and $f(x) \rightarrow-\infty$ as $x \rightarrow+\infty$, which matches the graph.

FINITE DIFFERENCES In Example 1, you found a function given its graph. Functions can also be written from a set of data using finite differences.

When the x-values in a data set are equally spaced, the differences of consecutive y-values are called finite differences. For example, some finite differences for the function $f(x)=x^{2}$ are shown below.

The finite differences above are called first-order differences. You can also calculate higher-order differences, as shown in the next example.

