5.9 Write Polynomial Functions and Models

You wrote linear and quadratic functions. You will write higher-degree polynomial functions. So you can model launch speed, as in Example 4.

(0, -6)

4x

Key Vocabulary finite differences

You know that two points determine a line and that three points determine a parabola. In Example 1, you will see that four points determine the graph of a cubic function.

EXAMPLE 1 Write a cubic function

Write the cubic function whose graph is shown.

Solution

STEP 1 Use the three given *x*-intercepts to write the function in factored form.

f(x) = a(x+4)(x-1)(x-3)

STEP 2 Find the value of *a* by substituting the coordinates of the fourth point.

$$-6 = a(0 + 4)(0 - 1)(0 - 3)$$
$$-6 = 12a$$
$$-\frac{1}{2} = a$$

The function is $f(x) = -\frac{1}{2}(x+4)(x-1)(x-3)$.

CHECK Check the end behavior of *f*. The degree of *f* is odd and a < 0. So $f(x) \to +\infty$ as $x \to -\infty$ and $f(x) \to -\infty$ as $x \to +\infty$, which matches the graph. \checkmark

FINITE DIFFERENCES In Example 1, you found a function given its graph. Functions can also be written from a set of data using *finite differences*.

When the *x*-values in a data set are equally spaced, the differences of consecutive *y*-values are called **finite differences**. For example, some finite differences for the function $f(x) = x^2$ are shown below.

The finite differences above are called *first-order differences*. You can also calculate higher-order differences, as shown in the next example.