TURNING POINTS Another important characteristic of graphs of polynomial functions is that they have turning points corresponding to local maximum and minimum values.

- The y-coordinate of a turning point is a local maximum of the function if the point is higher than all nearby points.
- The y-coordinate of a turning point is a local minimum of the function if the point is lower than all nearby points.

KEY CONCEPT

For Your Notebook

Turning Points of Polynomial Functions

1. The graph of every polynomial function of degree n has at most $n-1$ turning points.
2. If a polynomial function has n distinct real zeros, then its graph has exactly $n-1$ turning points.

EXAMPLE 2 Find turning points

Graph the function. Identify the x-intercepts and the points where the local maximums and local minimums occur.
a. $f(x)=x^{3}-3 x^{2}+6$
b. $g(x)=x^{4}-6 x^{3}+3 x^{2}+10 x-3$

Solution

a. Use a graphing calculator to graph the function.

Notice that the graph of f has one x-intercept and two turning points.
You can use the graphing calculator's zero, maximum, and minimum features to approximate the coordinates of the points.

- The x-intercept of the graph is $x \approx-1.20$. The
 function has a local maximum at $(\mathbf{0}, \mathbf{6})$ and a local minimum at $(2,2)$.
b. Use a graphing calculator to graph the function.

Notice that the graph of g has four x-intercepts and three turning points.

You can use the graphing calculator's zero, maximum, and minimum features to approximate the coordinates of the points.

- The x-intercepts of the graph are $x \approx-1.14$, $x \approx 0.29, x \approx 1.82$, and $x \approx 5.03$. The function has a local maximum at $(1.11,5.11)$ and local minimums at $(-0.57,-6.51)$ and $(3.96,-43.04)$.

[^0]
[^0]: AnimatedAlgebra at classzone.com

