5.8 Analyze Graphs of Polynomial Functions
 2A.4.B; P.1.D, P.1.E, P.3.B

> Before You graphed polynomial functions by making tables. You will use intercepts to graph polynomial functions. So you can maximize the volume of structures, as in Ex. 42.

Key Vocabulary

- local maximum
- local minimum

In this chapter you have learned that zeros, factors, solutions, and x-intercepts are closely related concepts. The relationships are summarized below.

CONCEPT SUMMARY
 For Your Notebook

Zeros, Factors, Solutions, and Intercepts

Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ be a polynomial function.
The following statements are equivalent.
Zero: k is a zero of the polynomial function f.
Factor: $x-k$ is a factor of the polynomial $f(x)$.
Solution: k is a solution of the polynomial equation $f(x)=0$.
x-intercept: If k is a real number, k is an x-intercept of the graph of the polynomial function f. The graph of f passes through ($k, 0$).

EXAMPLE 1 Use x-intercepts to graph a polynomial function

Graph the function $f(x)=\frac{1}{6}(x+3)(x-2)^{2}$.

Solution

STEP 1 Plot the intercepts. Because -3 and 2 are zeros of f, plot $(-3,0)$ and $(2,0)$.
STEP 2 Plot points between and beyond the x-intercepts.

x	-2	-1	0	1	3
y	$\frac{8}{3}$	3	2	$\frac{2}{3}$	1

STEP 3 Determine end behavior. Because f has three factors of the form $x-k$ and a constant factor of $\frac{1}{6}$, it is a cubic function with a positive leading coefficient. So, $f(x) \rightarrow-\infty$ as $x \rightarrow-\infty$ and $f(x) \rightarrow+\infty$ as $x \rightarrow+\infty$.
STEP 4 Draw the graph so that it passes through the plotted points and has the appropriate end behavior.

