EXAMPLE 6 Approximate real zeros of a polynomial model

TACHOMETER A tachometer measures the speed (in revolutions per minute, or RPMs) at which an engine shaft rotates. For a certain boat, the speed x of the engine shaft (in 100s of RPMs) and the speed s of the boat (in miles per hour) are modeled by

$$
s(x)=0.00547 x^{3}-0.225 x^{2}+3.62 x-11.0
$$

What is the tachometer reading when the boat travels 15 miles per hour?

Solution

Substitute 15 for $s(x)$ in the given function. You can rewrite the resulting equation as:

$$
0=0.00547 x^{3}-0.225 x^{2}+3.62 x-26.0
$$

Then, use a graphing calculator to approximate the real zeros of $f(x)=0.00547 x^{3}-0.225 x^{2}+3.62 x-26.0$.

From the graph, there is one real zero: $x \approx 19.9$.

- The tachometer reading is about 1990 RPMs.

Guided Practice for Examples 5 and 6

11. Approximate the real zeros of $f(x)=3 x^{5}+2 x^{4}-8 x^{3}+4 x^{2}-x-1$.
12. WHAT IF? In Example 6, what is the tachometer reading when the boat travels 20 miles per hour?

5.7 EXERCISES HOMEWORK KEY
 = WORKED-OUT SOLUTIONS on p. WS1 for Exs. 15, 37, and 61 = TAKS PRACTICE AND REASONING
 Exs. 9, 33, 51, 52, 63, 64, 66, and 67

SKILL PRACTICE

1. VOCABULARY Copy and complete: For the equation $(x-1)^{2}(x+2)=0$, $\mathrm{a}(\mathrm{n})$? solution is 1 because the factor $x-1$ appears twice.
2. VidRIIING Explain the difference between complex conjugates and irrational conjugates.

EXAMPLE 1
on p. 379
for Exs. 3-9

NUMBER OF SOLUTIONS OR ZEROS Identify the number of solutions or zeros.
3. $x^{4}+2 x^{3}-4 x^{2}+x-10=0$
4. $5 y^{3}-3 y^{2}+8 y=0$
5. $9 t^{6}-14 t^{3}+4 t-1=0$
6. $f(z)=-7 z^{4}+z^{2}-25$
7. $g(s)=12 s^{7}-9 s^{6}+4 s^{5}-s^{3}-20 s+50$
8. $h(x)=-x^{12}+7 x^{8}+5 x^{4}-8 x+6$
9. muaspageipine How many zeros does the function $f(x)=16 x-22 x^{3}+6 x^{6}+19 x^{5}-3$ have?
(A) 1
(B) 3
(C) 5
(D) 6

