Example 4 Use Descartes' rule of signs

Determine the possible numbers of positive real zeros, negative real zeros, and imaginary zeros for $f(x)=x^{6}-2 x^{5}+3 x^{4}-10 x^{3}-6 x^{2}-8 x-8$.

Solution

$$
f(x)=\underbrace{x^{6}}-2 x^{5}+3 x^{4}-10 x^{3}-6 x^{2}-8 x-8
$$

The coefficients in $f(x)$ have 3 sign changes, so f has 3 or 1 positive real zero(s).

$$
\begin{aligned}
f(-x) & =(-x)^{6}-2(-x)^{5}+3(-x)^{4}-10(-x)^{3}-6(-x)^{2}-8(-x)-8 \\
& =x^{6}+2 x^{5}+3 x^{4}+10 x^{3}-6 x^{2}+8 x-8
\end{aligned}
$$

The coefficients in $f(-x)$ have 3 sign changes, so f has 3 or 1 negative real zero(s).
The possible numbers of zeros for f are summarized in the table below.

Positive real zeros	Negative real zeros	Imaginary zeros	Total zeros
3	3	0	6
3	1	2	6
1	3	2	6
1	1	4	6

GUIDED PRACTICE for Example 4

Determine the possible numbers of positive real zeros, negative real zeros, and imaginary zeros for the function.
9. $f(x)=x^{3}+2 x-11$
10. $g(x)=2 x^{4}-8 x^{3}+6 x^{2}-3 x+1$

APPROXIMATING ZEROS All of the zeros of the function in Example 4 are irrational or imaginary. Irrational zeros can be approximated using technology.

EXAMPLE 5 Approximate real zeros

Approximate the real zeros of $f(x)=x^{6}-2 x^{5}+3 x^{4}-10 x^{3}-6 x^{2}-8 x-8$.

Solution

ANOTHER WAY
In Example 5, you can also approximate the zeros of f using the calculator's trace feature. However, this generally gives less precise results than the zero (or root) feature.

Use the zero (or root) feature of a graphing calculator, as shown below.

From these screens, you can see that the zeros are $x \approx-0.73$ and $x \approx 2.73$.

