EXAMPLE 3 Use zeros to write a polynomial function

Write a polynomial function f of least degree that has rational coefficients, a leading coefficient of 1 , and 3 and $2+\sqrt{5}$ as zeros.

Solution

Because the coefficients are rational and $2+\sqrt{5}$ is a zero, $2-\sqrt{5}$ must also be a zero by the irrational conjugates theorem. Use the three zeros and the factor theorem to write $f(x)$ as a product of three factors.

$$
\begin{aligned}
f(x) & =(x-3)[x-(2+\sqrt{5})][x-(2-\sqrt{5})] & & \text { Write } f(x) \text { in factored form. } \\
& =(x-3)[(x-2)-\sqrt{5}][(x-2)+\sqrt{5}] & & \text { Regroup terms. } \\
& =(x-3)\left[(x-2)^{2}-5\right] & & \text { Multiply. } \\
& =(x-3)\left[\left(x^{2}-4 x+4\right)-5\right] & & \text { Expand binomial. } \\
& =(x-3)\left(x^{2}-4 x-1\right) & & \text { Simplify. } \\
& =x^{3}-4 x^{2}-x-3 x^{2}+12 x+3 & & \text { Multiply. } \\
& =x^{3}-7 x^{2}+11 x+3 & & \text { Combine like terms. }
\end{aligned}
$$

CHECK You can check this result by evaluating $f(x)$ at each of its three zeros.

$$
\begin{aligned}
& f(3)=3^{3}-7(3)^{2}+11(3)+3=27-63+33+3=0 \checkmark \\
& \begin{aligned}
f(2+\sqrt{5}) & =(2+\sqrt{5})^{3}-7(2+\sqrt{5})^{2}+11(2+\sqrt{5})+3 \\
& =38+17 \sqrt{5}-63-28 \sqrt{5}+22+11 \sqrt{5}+3 \\
& =0
\end{aligned}
\end{aligned}
$$

Since $f(2+\sqrt{5})=0$, by the irrational conjugates theorem $f(2-\sqrt{5})=0 . \checkmark$

Guided Practice for Example 3

Write a polynomial function f of least degree that has rational coefficients, a leading coefficient of 1 , and the given zeros.
5. $-1,2,4$
6. $4,1+\sqrt{5}$
7. $2,2 i, 4-\sqrt{6}$
8. $3,3-i$

DESCARTES' RULE OF SIGNS French mathematician René Descartes (1596-1650) found the following relationship between the coefficients of a polynomial function and the number of positive and negative zeros of the function.

KEY CONCEPT

Descartes' Rule of Signs
Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$ be a polynomial function with real coefficients.

- The number of positive real zeros of f is equal to the number of changes in sign of the coefficients of $f(x)$ or is less than this by an even number.
- The number of negative real zeros of f is equal to the number of changes in sign of the coefficients of $f(-x)$ or is less than this by an even number.

