EXAMPLE 2 Find the zeros of a polynomial function

Find all zeros of $f(x)=x^{5}-4 x^{4}+4 x^{3}+10 x^{2}-13 x-14$.

Solution

STEP 1 Find the rational zeros of f. Because f is a polynomial function of degree 5 , it has 5 zeros. The possible rational zeros are $\pm 1, \pm 2, \pm 7$, and ± 14. Using synthetic division, you can determine that -1 is a zero repeated twice and 2 is also a zero.

STEP 2 Write $f(x)$ in factored form. Dividing $f(x)$ by its known factors $x+1$, $x+1$, and $x-2$ gives a quotient of $x^{2}-4 x+7$. Therefore:

$$
f(x)=(x+1)^{2}(x-2)\left(x^{2}-4 x+7\right)
$$

STEP 3 Find the complex zeros of f. Use the quadratic formula to factor the trinomial into linear factors.

$$
f(x)=(x+1)^{2}(x-2)[x-(2+i \sqrt{3})][x-(2-i \sqrt{3})]
$$

- The zeros of f are $-1,-1,2,2+i \sqrt{3}$, and $2-i \sqrt{3}$.

BEHAVIOR NEAR ZEROS The graph of f in Example 2 is shown at the right. Note that only the real zeros appear as x-intercepts. Also note that the graph is tangent to the x-axis at the repeated zero $x=-1$, but crosses the x-axis at the zero $x=2$. This concept can be generalized as follows:

- When a factor $x-k$ of a function f is raised to an odd power, the graph of f crosses the x-axis at $x=k$.

- When a factor $x-k$ of a function f is raised to an even power, the graph of f is tangent to the x-axis at $x=k$.

Guided Practice for Example 2

Find all zeros of the polynomial function.
3. $f(x)=x^{3}+7 x^{2}+15 x+9$
4. $f(x)=x^{5}-2 x^{4}+8 x^{2}-13 x+6$

REVIEW COMPLEX

 NUMBERSFor help with complex conjugates, see p. 278.

COMPLEX CONJUGATES Also in Example 2, notice that the zeros $2+i \sqrt{3}$ and $2-i \sqrt{3}$ are complex conjugates. This illustrates the first theorem given below. A similar result applies to irrational zeros of polynomial functions, as shown in the second theorem below.

KEY CONCEPT

For Your Notebook

Complex Conjugates Theorem

If f is a polynomial function with real coefficients, and $a+b i$ is an imaginary zero of f, then $a-b i$ is also a zero of f.

Irrational Conjugates Theorem

Suppose f is a polynomial function with rational coefficients, and a and b are rational numbers such that \sqrt{b} is irrational. If $a+\sqrt{b}$ is a zero of f, then $a-\sqrt{b}$ is also a zero of f.

