5.6 Use the Location Principle

TEKS a.1, a.5, a. 6

QUESTION How can you use the Location Principle to identify zeros of a polynomial function?

You can use the following result, called the Location Principle, to help you find zeros of polynomial functions:

If f is a polynomial function and a and b are two numbers such that $f(a)<0$ and $f(b)>0$, then f has at least one real zero between a and b.

EXAMPLE Find zeros of a polynomial function

Find all real zeros of $f(x)=6 x^{3}+5 x^{2}-17 x-6$.

STEP 1 Enter values for x

Enter " x " into cell A1. Enter " 0 " into cell A2. Type "=A2+1" into cell A3. Select cells A3 through A7, and use the fill down command to fill in values of x.

	A	B
1	x	
2		0
3	1	
4	2	
5	3	
6	4	
7	5	

STEP 2 Enter values for $f(x)$

Enter " $f(x)$ " into cell B1. Enter
$"=6^{*} \mathrm{~A} 2^{\wedge} 3+5^{*} \mathrm{~A} 2^{\wedge} 2-17^{*} \mathrm{~A} 2-6$ " into cell B2. Select cells B2 through B7, and use the fill down command to fill in the values of $f(x)$.

	A	\mathbf{B}
$\mathbf{1}$	x	$f(x)$
2		0
3	1	-6
4	2	-12
5	3	28
6	4	150
7	5	390

STEP 3 Use Location Principle

The spreadsheet in Step 2 shows that $f(1)<0$ and $f(2)>0$. So, by the Location Principle, f has a zero between 1 and 2 . The rational zero theorem shows that the only possible rational zero between 1 and 2 is $\frac{3}{2}$. Synthetic division confirms that $\frac{3}{2}$ is a zero and that f can be factored as:
$f(x)=\left(x-\frac{3}{2}\right)\left(6 x^{2}+14 x+4\right)=(2 x-3)\left(3 x^{2}+7 x+2\right)=(2 x-3)(3 x+1)(x+2)$

- The zeros of f are $\frac{3}{2},-\frac{1}{3}$, and -2 .

PrACtice

Find all real zeros of the function.

1. $f(x)=6 x^{3}-10 x^{2}-6 x+10$
2. $f(x)=24 x^{4}-38 x^{3}-191 x^{2}-157 x-28$
3. $f(x)=36 x^{3}+109 x^{2}-341 x+70$
4. $f(x)=12 x^{4}+25 x^{3}-160 x^{2}-305 x-132$
