Spreadsheet ACTIVITY Use after Lesson 5.6

TEXAS @HomeTutor classzone.com Keystrokes

5.6 Use the Location Principle

текз а.1, а.5, а.6

QUESTION How can you use the Location Principle to identify zeros of a polynomial function?

You can use the following result, called the *Location Principle*, to help you find zeros of polynomial functions:

If *f* is a polynomial function and *a* and *b* are two numbers such that f(a) < 0 and f(b) > 0, then *f* has at least one real zero between *a* and *b*.

EXAMPLE Find zeros of a polynomial function

Find all real zeros of $f(x) = 6x^3 + 5x^2 - 17x - 6$.

STEP 1 Enter values for x

Enter "x" into cell A1. Enter "0" into cell A2. Type "=A2+1" into cell A3. Select cells A3 through A7, and use the *fill down* command to fill in values of x.

	A	В
1	X	
2	0	
3	1	
4	2	
5	3	
6	4	
7	5	

Enter "f(x)" into cell B1. Enter "=6*A2^3+5*A2^2-17*A2-6" into cell B2. Select cells B2 through B7, and use the *fill down* command to fill in the values of f(x).

	Α	В
1	X	f(x)
2	0	-6
3	1	-12
4	2	28
5	3	150
6	4	150 390 784
7	5	784

STEP 3 Use Location Principle

The spreadsheet in Step 2 shows that f(1) < 0 and f(2) > 0. So, by the Location Principle, *f* has a zero between 1 and 2. The rational zero theorem shows that the only possible *rational* zero between 1 and 2 is $\frac{3}{2}$. Synthetic division confirms that $\frac{3}{2}$ is a zero and that *f* can be factored as:

$$f(x) = \left(x - \frac{3}{2}\right)(6x^2 + 14x + 4) = (2x - 3)(3x^2 + 7x + 2) = (2x - 3)(3x + 1)(x + 2)$$

The zeros of *f* are $\frac{3}{2}$, $-\frac{1}{3}$, and -2 .

PRACTICE

Find all real zeros of the function.

1. $f(x) = 6x^3 - 10x^2 - 6x + 10$	2. $f(x) = 24x^4 - 38x^3 - 191x^2 - 157x - 28$
3. $f(x) = 36x^3 + 109x^2 - 341x + 70$	4. $f(x) = 12x^4 + 25x^3 - 160x^2 - 305x - 132$