Find all real zeros of the function.
5. $f(x)=48 x^{3}+4 x^{2}-20 x+3$
6. $f(x)=2 x^{4}+5 x^{3}-18 x^{2}-19 x+42$

EXAMPLE 4 SAKG REAGGNENFpMbliteritep Problem

ICE SCULPTURES Some ice sculptures are made by filling a mold with water and then freezing it. You are making such an ice sculpture for a school dance. It is to be shaped like a pyramid with a height that is 1 foot greater than the length of each side of its square base. The volume of the ice sculpture is 4 cubic feet. What are the dimensions of the mold?

Solution

STEP 1 Write an equation for the volume of the ice sculpture.

$\begin{aligned} & \text { Volume } \\ & \text { (cubic feet) } \end{aligned}=\frac{\mathbf{1}}{\mathbf{3}}$	Area of base (square feet)	Height (feet)
\checkmark	\checkmark	\checkmark
$4=\frac{1}{3}$.	x^{2}	$(x+1)$
$4=\frac{1}{3} x^{2}(x+1)$	Write equation.	
$12=x^{3}+x^{2}$	Multiply each side by 3 and simplify.	
$0=x^{3}+x^{2}-12$	Subtract 12 from each side.	

STEP 2 List the possible rational solutions: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{3}{1}, \pm \frac{4}{1}, \pm \frac{6}{1}, \pm \frac{12}{1}$
STEP 3 Test possible solutions. Only positive x-values make sense.

STEP 4 Check for other solutions. The other two solutions, which satisfy $x^{2}+3 x+6=0$, are $x=\frac{-3 \pm i \sqrt{15}}{2}$ and can be discarded because they
are imaginary numbers. are imaginary numbers.

- The only reasonable solution is $x=2$. The base of the mold is 2 feet by 2 feet. The height of the mold is $2+1=3$ feet.

Guided Practice for Example 4

7. WHAT IF? In Example 4, suppose the base of the ice sculpture has sides that are 1 foot longer than the height. The volume of the ice sculpture is 6 cubic feet. What are the dimensions of the mold?
