List the possible rational zeros of \boldsymbol{f} using the rational zero theorem.

1. $f(x)=x^{3}+9 x^{2}+23 x+15$
2. $f(x)=2 x^{3}+3 x^{2}-11 x-6$

VERIFYING ZEROS In Lesson 5.5, you found zeros of polynomial functions when one zero was known. The rational zero theorem is a starting point for finding zeros when no zeros are known.

However, the rational zero theorem lists only possible zeros. In order to find the actual zeros of a polynomial function f, you must test values from the list of possible zeros. You can test a value by evaluating $f(x)$ using the test value as x.

EXAMPLE 2 Find zeros when the leading coefficient is 1

Find all real zeros of $f(x)=x^{3}-8 x^{2}+11 x+20$.

Solution

STEP 1 List the possible rational zeros. The leading coefficient is 1 and the constant term is 20 . So, the possible rational zeros are:

$$
x= \pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}, \pm \frac{5}{1}, \pm \frac{10}{1}, \pm \frac{20}{1}
$$

STEP 2 Test these zeros using synthetic division.

Because -1 is a zero of f, you can write $f(x)=(x+1)\left(x^{2}-9 x+20\right)$.
STEP 3 Factor the trinomial in $f(x)$ and use the factor theorem.

$$
f(x)=(x+1)\left(x^{2}-9 x+20\right)=(x+1)(x-4)(x-5)
$$

- The zeros of f are $-1,4$, and 5 .

AnimatedAlgebra at classzone.com

Guided Practice for Example 2

Find all real zeros of the function.
3. $f(x)=x^{3}-4 x^{2}-15 x+18$
4. $f(x)=x^{3}-8 x^{2}+5 x+14$

LIMITING THE SEARCH FOR ZEROS In Example 2, the leading coefficient of the polynomial function is 1 . When the leading coefficient is not 1 , the list of possible rational zeros can increase dramatically. In such cases, the search can be shortened by sketching the function's graph.

