

So you can model manufacturing processes, as in Ex. 45.

Key Vocabulary

Why?

• zero of a function, p. 254

- constant term, p. 337
- leading coefficient, p. 337

The polynomial function $f(x) = 64x^3 + 152x^2 - 62x - 105$ has $-\frac{5}{2}$, $-\frac{3}{4}$, and $\frac{7}{8}$ as its zeros. Notice that the numerators of these zeros (-5, -3, and 7) are factors of the constant term, -105. Also notice that the denominators (2, 4, and 8) are factors of the leading coefficient, 64. These observations are generalized by the *rational zero theorem*.

k	KEY CONCEPT For Your Notebook
T	Fhe Rational Zero Theorem
I: O	If $f(x) = a_n x^n + \cdots + a_1 x + a_0$ has <i>integer</i> coefficients, then every rational zero of <i>f</i> has the following form:
	$\frac{p}{q} = \frac{\text{factor of constant term } a_0}{\text{factor of leading coefficient } a_n}$

EXAMPLE 1 List possible rational zeros

List the possible rational zeros of f using the rational zero theorem.

- **a.** $f(x) = x^3 + 2x^2 11x + 12$
- \rightarrow Factors of the constant term: ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 12

Factors of the leading coefficient: ±1

Possible rational zeros: $\pm \frac{1}{1}$, $\pm \frac{2}{1}$, $\pm \frac{3}{1}$, $\pm \frac{4}{1}$, $\pm \frac{6}{1}$, $\pm \frac{12}{1}$

- Simplified list of possible zeros: ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 12
- **b.** $f(x) = 4x^4 x^3 3x^2 + 9x 10$

Factors of the constant term: ± 1 , ± 2 , ± 5 , ± 10

Factors of the leading coefficient: ± 1 , ± 2 , ± 4

Possible rational zeros:

 $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{5}{1}, \pm \frac{10}{1}, \pm \frac{1}{2}, \pm \frac{2}{2}, \pm \frac{5}{2}, \pm \frac{10}{2}, \pm \frac{1}{4}, \pm \frac{2}{4}, \pm \frac{5}{4}, \pm \frac{10}{4}$ Simplified list of possible zeros: $\pm 1, \pm 2, \pm 5, \pm 10, \pm \frac{1}{2}, \pm \frac{5}{2}, \pm \frac{1}{4}, \pm \frac{5}{4}$

AVOID ERRORS Be sure your lists

include both the positive and negative factors of the constant term and the leading coefficient.