5.6
 Find Rational Zeros

2A.8.B; P.1.D,
P.3.A, P.3.B

Before You found the zeros of a polynomial function given one zero.

Now
Why? You will find all real zeros of a polynomial function.

So you can model manufacturing processes, as in Ex. 45.

Key Vocabulary

- zero of a function, p. 254
- constant term, p. 337
- leading coefficient, p. 337

The polynomial function $f(x)=64 x^{3}+152 x^{2}-62 x-105$ has $-\frac{5}{2},-\frac{3}{4}$, and $\frac{7}{8}$ as its zeros. Notice that the numerators of these zeros $(-5,-3$, and 7) are factors of the constant term, -105 . Also notice that the denominators $(2,4$, and 8) are factors of the leading coefficient, 64 . These observations are generalized by the rational zero theorem.

KEY CONCEPT

The Rational Zero Theorem

If $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ has integer coefficients, then every rational zero of f has the following form:

$$
\frac{p}{q}=\frac{\text { factor of constant term } a_{0}}{\text { factor of leading coefficient } a_{n}}
$$

EXAMPLE 1 List possible rational zeros

List the possible rational zeros of f using the rational zero theorem.
a. $f(x)=x^{3}+2 x^{2}-11 x+12$

AVOID ERRORS
Be sure your lists include both the positive and negative factors of the constant term and the leading coefficient.

Factors of the constant term: $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$
Factors of the leading coefficient: $\pm \mathbf{1}$
Possible rational zeros: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{3}{1}, \pm \frac{4}{1}, \pm \frac{6}{1}, \pm \frac{12}{1}$
Simplified list of possible zeros: $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$
b. $f(x)=4 x^{4}-x^{3}-3 x^{2}+9 x-10$

Factors of the constant term: $\pm 1, \pm 2, \pm 5, \pm 10$
Factors of the leading coefficient: $\pm 1, \pm 2, \pm 4$
Possible rational zeros:
$\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{5}{1}, \pm \frac{10}{1}, \pm \frac{1}{2}, \pm \frac{2}{2}, \pm \frac{5}{2}, \pm \frac{10}{2}, \pm \frac{1}{4}, \pm \frac{2}{4}, \pm \frac{5}{4}, \pm \frac{10}{4}$
Simplified list of possible zeros: $\pm 1, \pm 2, \pm 5, \pm 10, \pm \frac{1}{2}, \pm \frac{5}{2}, \pm \frac{1}{4}, \pm \frac{5}{4}$

