EXAMPLE 5 TAKS PRACTICE: Multiple Choice

One zero of $f(x)=x^{3}-5 x^{2}-12 x+36$ is $x=2$. What is another zero of f ?
(A) -6
(B) -3
(C) -2
(D) 3

Solution

Because $f(2)=0, x-2$ is a factor of $f(x)$. Use synthetic division.

2	1	-5	-12	36
		2	-6	-36
	1	-3	-18	0

Use the result to write $f(x)$ as a product of two factors. Then factor completely.

$$
f(x)=x^{3}-5 x^{2}-12 x+36=(x-2)\left(x^{2}-3 x-18\right)=(x-2)(x+3)(x-6)
$$

The zeros are $2,-3$, and 6 .

- The correct answer is B. (A) (B) (D)

EXAMPLE 6 Use a polynomial model

BUSINESS The profit P (in millions of dollars) for a shoe manufacturer can be modeled by $P=-21 x^{3}+46 x$ where x is the number of shoes produced (in millions). The company now produces 1 million shoes and makes a profit of $\$ 25,000,000$, but would like to cut back production. What lesser number of shoes could the company produce and still make the same profit?

Solution

$$
\begin{aligned}
25 & =-21 x^{3}+46 x & & \text { Substitute } \mathbf{2 5} \text { for } P \text { in } P=-21 x^{3}+46 x . \\
0 & =21 x^{3}-46 x+25 & & \text { Write in standard form. }
\end{aligned}
$$

You know that $x=1$ is one solution of the equation. This implies that $x-1$ is a factor of $21 x^{3}-46 x+25$. Use synthetic division to find the other factors.

1 | 21 | 0 | -46 | 25 |
| ---: | ---: | ---: | ---: |
| | 21 | 21 | -25 |
| 21 | 21 | -25 | 0 |

So, $(x-1)\left(21 x^{2}+21 x-25\right)=0$. Use the quadratic formula to find that $x \approx 0.7$ is the other positive solution.

- The company could still make the same profit producing about 700,000 shoes.

Guided Practice for Examples 5 and 6

Find the other zeros of $\boldsymbol{f g i v e n}$ that $\boldsymbol{f}(-2)=0$.
7. $f(x)=x^{3}+2 x^{2}-9 x-18$
8. $f(x)=x^{3}+8 x^{2}+5 x-14$
9. WHAT IF? In Example 6, how does the answer change if the profit for the shoe manufacturer is modeled by $P=-15 x^{3}+40 x$?

