EXAMPLE 5 TAKS PRACTICE: Multiple Choice

One zero of $f(x) = x^3 - 5x^2 - 12x + 36$ is x = 2. What is another zero of f? (A) -6 (B) -3 (C) -2 (D) 3

Solution

Because f(2) = 0, x - 2 is a factor of f(x). Use synthetic division.

2	1	-5	-12	36
		2	-6	-36
	1	-3	-18	0

Use the result to write f(x) as a product of two factors. Then factor completely.

$$f(x) = x^3 - 5x^2 - 12x + 36 = (x - 2)(x^2 - 3x - 18) = (x - 2)(x + 3)(x - 6)$$

The zeros are 2, -3, and 6.

The correct answer is B. (A) (B) \bigcirc (D)

EXAMPLE 6 Use a polynomial model

BUSINESS The profit *P* (in millions of dollars) for a shoe manufacturer can be modeled by $P = -21x^3 + 46x$ where *x* is the number of shoes produced (in millions). The company now produces 1 million shoes and makes a profit of \$25,000,000, but would like to cut back production. What lesser number of shoes could the company produce and still make the same profit?

Solution

 $25 = -21x^3 + 46x$

 $0 = 21x^3 - 46x + 25$ Write in standard form.

Substitute 25 for P in $P = -21x^3 + 46x$.

You know that x = 1 is one solution of the equation. This implies that x - 1 is a factor of $21x^3 - 46x + 25$. Use synthetic division to find the other factors.

1	21	0	-46	25
		21	21	-25
	21	21	-25	0

So, $(x - 1)(21x^2 + 21x - 25) = 0$. Use the quadratic formula to find that $x \approx 0.7$ is the other positive solution.

The company could still make the same profit producing about 700,000 shoes.

 \checkmark

GUIDED PRACTICE for Examples 5 and 6

Find the other zeros of f given that f(-2) = 0.

7.
$$f(x) = x^3 + 2x^2 - 9x - 18$$

8. $f(x) = x^3 + 8x^2 + 5x - 14$

9. WHAT IF? In Example 6, how does the answer change if the profit for the shoe manufacturer is modeled by $P = -15x^3 + 40x$?