FACTOR THEOREM Suppose the remainder is 0 when a polynomial f(x) is divided by x - k. Then

$$\frac{f(x)}{x-k} = q(x) + \frac{0}{x-k} = q(x)$$

where q(x) is the quotient polynomial. Therefore, $f(x) = (x - k) \cdot q(x)$, so that x - k is a factor of f(x). This result is summarized by the *factor theorem*.

111	KEY CONCEPT	For Your Notebook
9999	Factor Theorem	
66666	A polynomial $f(x)$ h	as a factor $x - k$ if and only if $f(k) = 0$.

The factor theorem can be used to solve a variety of problems.

Problem	Example	
Given one <i>factor</i> of a polynomial, find the other <i>factors</i> .	See Example 4 below.	
Given one <i>zero</i> of a polynomial function, find the other <i>zeros</i> .	See Example 5 on page 365.	
Given one <i>solution</i> of a polynomial equation, find the other <i>solutions</i> .	See Example 6 on page 365.	

EXAMPLE 4 Factor a polynomial

Factor $f(x) = 3x^3 - 4x^2 - 28x - 16$ completely given that x + 2 is a factor.

Solution

AVOID ERRORS

of its factors.

The remainder after using synthetic division should always be zero when you are dividing a polynomial by one Because x + 2 is a factor of f(x), you know that f(-2) = 0. Use synthetic division to find the other factors.

-2	3	-4	-28	-16
		-6	20	16
	3	-10	-8	0

Use the result to write f(x) as a product of two factors and then factor completely.

 $f(x) = 3x^3 - 4x^2 - 28x - 16$ Write original polynomial. = $(x + 2)(3x^2 - 10x - 8)$ Write as a product of two factors. = (x + 2)(3x + 2)(x - 4) Factor trinomial.

GUIDED PRACTICE for Examples 3 and 4

Divide using synthetic division.

3. $(x^3 + 4x^2 - x - 1) \div (x + 3)$

4.
$$(4x^3 + x^2 - 3x + 7) \div (x - 1)$$

6. $f(x) = x^3 - x^2 - 22x + 40$

Factor the polynomial completely given that x - 4 is a factor.

5.
$$f(x) = x^3 - 6x^2 + 5x + 12$$