EXAMPLE 2 Use polynomial long division with a linear divisor

Divide $f(x)=x^{3}+5 x^{2}-7 x+2$ by $x-2$.
$x - 2 \longdiv { x ^ { 2 } + 7 x + 7 } \leftarrow 4 x ^ { 2 } - 7 x + 2 4$ quotient

$\frac{x^{3}-2 x^{2}}{7 x^{2}-7 x}$	Multiply divisor by $x^{3} / x=x^{2}$.
$\frac{7 x^{2}-14 x}{7 x}+2$	Subtract.
Multiply divisor by $7 x^{2} / x=7 x$.	
$\frac{7 x-14}{16}$	Subtract.
Multiply divisor by $7 x / x=7$.	
	remainder

$\frac{x^{3}+5 x^{2}-7 x+2}{x-2}=x^{2}+7 x+7+\frac{16}{x-2}$

Guided Practice for Examples 1 and 2

Divide using polynomial long division.

1. $\left(2 x^{4}+x^{3}+x-1\right) \div\left(x^{2}+2 x-1\right)$
2. $\left(x^{3}-x^{2}+4 x-10\right) \div(x+2)$

SYNTHETIC DIVISION If you use synthetic substitution to evaluate $f(x)$ in Example 2 when $x=2$, as shown below, you can see that $f(2)$ equals the remainder when $f(x)$ is divided by $x-2$. Also, the other values below the line match the coefficients of the quotient. For this reason, synthetic substitution is sometimes called synthetic division. Synthetic division can be used to divide any polynomial by a divisor of the form $x-k$.

coefficients of quotient \longrightarrow\begin{tabular}{cccc}

2 \& | 1 | 5 | -7 | 2 |
| ---: | ---: | ---: | ---: |
| 2 | 14 | 14 | | \& $\mathbf{7}$ \& 7

\hline
\end{tabular}

KEY CONCEPT
 For Your Notebook

Remainder Theorem
If a polynomial $f(x)$ is divided by $x-k$, then the remainder is $r=f(k)$.

Example 3 Use synthetic division

```
DIVIDE
POLYNOMIALS
Because the divisor is
x+3=x-(-3),
evaluate the dividend
when }x=-3\mathrm{ .
```


POLYNOMIALS

Because the divisor is $x+3=x-(-3)$, evaluate the dividend when $x=-3$.

Divide $f(x)=2 x^{3}+x^{2}-8 x+5$ by $x+3$ using synthetic division.

.. -3 \begin{tabular}{rrrr}

| 2 | 1 | -8 |
| ---: | ---: | ---: | ---: |
| -6 | | | \& 5

\& 15 \& -21

2 \& -5 \& 7 \& -16
\end{tabular}

$$
\frac{2 x^{3}+x^{2}-8 x+5}{x+3}=2 x^{2}-5 x+7-\frac{16}{x+3}
$$

