METHOD 2 Using a Graph Another approach is to make a graph. You can use the graph to find the value of x that makes the volume of the basin 36 cubic feet.

STEP 1 Write the function. From the diagram, you can see that the volume y of water the basin can hold is given by this function:

$$
y=(2 x-2)(x-2)(x-1)
$$

STEP 2 Graph the equations $y=36$ and $y=(x-1)(2 x-2)(x-2)$. Choose a viewing window that shows the intersection of the graphs.

STEP 3 Identify the coordinates of the intersection point. On a graphing calculator, you can use the intersect feature. The intersection point is $(4,36)$.

The volume of the basin is 36 cubic feet when x is 4 feet. So, the outer dimensions of the basin should be as follows:

$$
\begin{aligned}
& \text { Length }=2 x=8 \text { feet } \\
& \text { Width }=x=4 \text { feet } \\
& \text { Height }=x=4 \text { feet }
\end{aligned}
$$

PRACTICE

SOLVING EQUATIONS Solve the polynomial

 equation using a table or using a graph.1. $x^{3}+4 x^{2}-8 x=96$
2. $x^{3}-9 x^{2}-14 x+7=-33$
3. $2 x^{3}-11 x^{2}+3 x+5=59$
4. $x^{4}+x^{3}-15 x^{2}-8 x+6=-45$
5. $-x^{4}+2 x^{3}+6 x^{2}+17 x-4=32$
6. $-3 x^{4}+4 x^{3}+8 x^{2}+4 x-11=13$
7. $4 x^{4}-16 x^{3}+29 x^{2}-95 x=-150$
8. WHAT IF? In the problem on page 360, suppose the basin is to hold 200 cubic feet of water. Find the outer dimensions of the basin using a table and using a graph.
9. PACKAGING A factory needs a box that has a volume of 1728 cubic inches. The width should be 4 inches less than the height, and the length should be 6 inches greater than the height. Find the dimensions of the box using a table and using a graph.
10. AGRICULTURE From 1970 to 2002, the average yearly pineapple consumption P (in pounds) per person in the United States can be modeled by the function

$$
\begin{aligned}
P(x)= & 0.0000984 x^{4}-0.00712 x^{3}+0.162 x^{2}- \\
& 1.11 x+12.3
\end{aligned}
$$

where x is the number of years since 1970. In what year was the pineapple consumption about 9.97 pounds per person? Solve the problem using a table and a graph.

