- 63. **TAKS REASONING** A platform shaped like a rectangular prism has dimensions x - 2 feet by 3 - 2x feet by 3x + 4 feet. *Explain* why the volume of the platform cannot be $\frac{7}{3}$ cubic feet.
- 64. 👆 TAKS REASONING In 2000 B.C., the Babylonians solved polynomial equations using tables of values. One such table gave values of $y^3 + y^2$. To be able to use this table, the Babylonians sometimes had to manipulate the equation, as shown below.

$$ax^{3} + bx^{2} = c$$
 Original equation

$$\frac{a^{3}x^{3}}{b^{3}} + \frac{a^{2}x^{2}}{b^{2}} = \frac{a^{2}c}{b^{3}}$$
 Multiply each side by $\frac{a^{2}}{b^{3}}$.

$$\left(\frac{ax}{b}\right)^{3} + \left(\frac{ax}{b}\right)^{2} = \frac{a^{2}c}{b^{3}}$$
 Rewrite cubes and squares

They then found $\frac{a^2c}{b^3}$ in the $y^3 + y^2$ column of the table. Because the corresponding y-value was $y = \frac{ax}{b}$, they could conclude that $x = \frac{by}{a}$.

- **a.** Calculate $y^3 + y^2$ for y = 1, 2, 3, ..., 10. Record the values in a table.
- **b.** Use your table and the method described above to solve $x^3 + 2x^2 = 96$.
- **c.** Use your table and the method described above to solve $3x^3 + 2x^2 = 512$.
- d. How can you modify the method described above for equations of the form $ax^4 + bx^3 = c$?

65. CHALLENGE Use the diagram to complete parts (a)-(c).

- **a.** Explain why $a^3 b^3$ is equal to the sum of the volumes of solid I. solid II. and solid III.
- **b.** Write an algebraic expression for the volume of each of the three solids. Leave your expressions in factored form.
- c. Use the results from parts (a) and (b) to derive the factoring pattern for $a^3 - b^3$ given on page 354.

TAKS PRACTICE at classzone.com

MIXED REVIEW FOR TAKS

describes the range of the function represented

66. TAKS PRACTICE Which inequality best

REVIEW Lesson 2.1; TAKS Workbook

A y≤3	(B) $y \ge 3$
$(\mathbf{C}) -3 \le \gamma \le 3$	$(\mathbf{D}) -4 \le \gamma \le 4$

by the graph shown? TAKS Obj. 2

- 67. **TAKS PRACTICE** A poster is shaped like an equilateral triangle with a side length of 30 inches. What is the approximate area of the poster? TAKS Obj. 8
 - (**F**) 195 in.^2 (**G**) 318 in.^2
 - **(H)** 390 in.^2 **(J)** 780 in.^2

ONLINE QUIZ at classzone.com