QUADRATIC FORM An expression of the form $a u^{2}+b u+c$, where u is any expression in x, is said to be in quadratic form. The factoring techniques you studied in Chapter 4 can sometimes be used to factor such expressions.

EXAMPLE 4 Factor polynomials in quadratic form

IDENTIFY

QUADRATIC FORM
The expression
$16 x^{4}-81$ is in quadratic form because it can be written as $u^{2}-81$ where $u=4 x^{2}$.

Factor completely: (a) $16 x^{4}-81$ and (b) $2 p^{8}+10 p^{5}+12 p^{2}$.
a. $16 x^{4}-81=\left(4 x^{2}\right)^{2}-9^{2}$

$$
\begin{aligned}
& =\left(4 x^{2}+9\right)\left(4 x^{2}-9\right) \\
& =\left(4 x^{2}+9\right)(2 x+3)(2 x-3)
\end{aligned}
$$

Write as difference of two squares.
Difference of two squares
Difference of two squares
b. $2 p^{8}+10 p^{5}+12 p^{2}=2 p^{2}\left(p^{6}+5 p^{3}+6\right)$
$=2 p^{2}\left(p^{3}+3\right)\left(p^{3}+2\right) \quad$ Factor trinomial in quadratic form.

Guided Practice for Examples 3 and 4

Factor the polynomial completely.
5. $x^{3}+7 x^{2}-9 x-63$
6. $16 g^{4}-625$
7. $4 t^{6}-20 t^{4}+24 t^{2}$

SOLVING POLYNOMIAL EQUATIONS In Chapter 4, you learned how to use the zero product property to solve factorable quadratic equations. You can extend this technique to solve some higher-degree polynomial equations.

AVOID ERRORS

 Do not divide each side of an equation by a variable or a variable expression, such as $4 x$. Doing so will result in the loss of solutions.
EXAMPLE 5 TAKS PRACTICE: Multiple Choice

What are the real-number solutions of the equation $4 x^{5}+216 x=60 x^{3}$?
(A) $0,2,3,6$
(B) $-3,0,3$
(C) $0, \sqrt{6}, 3$
(D) $-3,-\sqrt{6}, 0, \sqrt{6}, 3$

Solution

AVOID ERRORS	$4 x^{5}+216 x=60 x^{3}$	Write original equation.
	$4 x^{5}-60 x^{3}+216 x=0$	Write in standard form.
	$4 x\left(x^{4}-15 x^{2}+54\right)=0$	Factor common monomial.
Do not divide each side of an equation by a	$4 x\left(x^{2}-9\right)\left(x^{2}-6\right)=0$	Factor trinomial.
variable or a variable expression, such as $4 x$.	$4 x(x+3)(x-3)\left(x^{2}-6\right)=0$	Difference of two squares
Doing so will result in the loss of solutions.	$x=0, x=-3, x=3, x=\sqrt{6}, \text { or } x=-\sqrt{6}$ The correct answer is D. (A) (B) (C) (D)	Zero product property

Guided Practice for Example 5

Find the real-number solutions of the equation.
8. $4 x^{5}-40 x^{3}+36 x=0$
9. $2 x^{5}+24 x=14 x^{3}$
10. $-27 x^{3}+15 x^{2}=-6 x^{4}$

