QUADRATIC FORM An expression of the form $au^2 + bu + c$, where *u* is any expression in *x*, is said to be in **quadratic form**. The factoring techniques you studied in Chapter 4 can sometimes be used to factor such expressions.

EXAMPLE 4 Factor polynomials in quadratic form

IDENTIFY	Factor completely: (a) $16x^4 - 81$ and (b) $2p^8 + 10p^5 + 12p^2$.		
QUADRATIC FORM The expression	a. $16x^4 - 81 = (4x^2)^2 - 9^2$	Write as difference of two squares.	
16 <i>x</i> ⁴ – 81 is in	$= (4x^2 + 9)(4x^2 - 9)$	Difference of two squares	
quadratic form because it can be written as	$= (4x^2 + 9)(2x + 3)(2x - 3)$	Difference of two squares	
$u^2 - 81$ where $u = 4x^2$.	b. $2p^8 + 10p^5 + 12p^2 = 2p^2(p^6 + 5p^3 + 6)$	Factor common monomial.	
	$=2p^2(p^3+3)(p^3+2)$	Factor trinomial in quadratic form.	

GUIDED PRACTICE for Examples 3 and 4

Factor the polynomial completely.

5. $x^3 + 7x^2 - 9x - 63$ **6.** $16g^4 - 625$ **7.** $4t^6 - 20t^4 + 24t^2$

SOLVING POLYNOMIAL EQUATIONS In Chapter 4, you learned how to use the zero product property to solve factorable quadratic equations. You can extend this technique to solve some higher-degree polynomial equations.

EXAMPLE 5) TAKS PRACTICE: Multiple Choice

What are the real-number solutions of the equation $4x^5 + 216x = 60x^3$?			
(A) 0, 2, 3, 6	B -3, 0, 3		
(C) $0, \sqrt{6}, 3$	D $-3, -\sqrt{6}, 0, \sqrt{6}, 3$		
Solution			

AVOID ERRORS

Do not divide each side of an equation by a variable or a variable expression, such as 4x. Doing so will result in the loss of solutions.

$4x^5 + 216x = 60x^3$	Write original equation.
$4x^5 - 60x^3 + 216x = 0$	Write in standard form.
$4x(x^4 - 15x^2 + 54) = 0$	Factor common monomial.
$4x(x^2 - 9)(x^2 - 6) = 0$	Factor trinomial.
$4x(x+3)(x-3)(x^2-6) = 0$	Difference of two squares
$x = 0, x = -3, x = 3, x = \sqrt{6}, \text{ or } x = -\sqrt{6}$	Zero product property
The correct answer is D. A B C D	

GUIDED PRACTICE for Example 5

Find the real-number solutions of the equation.

8. $4x^5 - 40x^3 + 36x = 0$ **9.** $2x^5 + 24x = 14x^3$

10.
$$-27x^3 + 15x^2 = -6x^4$$