FACTORING PATTERNS In part (b) of Example 1, the special factoring pattern for the difference of two squares is used to factor the expression completely. There are also factoring patterns that you can use to factor the sum or difference of two cubes.

KEY CONCEPT	For Your Notebook
Special Factoring Patterns	
Sum of Two Cubes	Example
$a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$	$8x^3 + 27 = (2x)^3 + 3^3$
	$= (2x+3)(4x^2 - 6x + 9)$
Difference of Two Cubes	Example
$a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$	$64x^3 - 1 = (4x)^3 - 1^3$
	$= (4x - 1)(16x^2 + 4x + 1)$

EXAMPLE 2 Factor the sum or difference of two cubes

Factor the polynomial completely. **a.** $x^3 + 64 = x^3 + 4^3$ Sum of two cubes $= (x + 4)(x^2 - 4x + 16)$ **b.** $16z^5 - 250z^2 = 2z^2(8z^3 - 125)$ $=2z^{2}[(2z)^{3}-5^{3}]$ $= 2z^2(2z - 5)(4z^2 + 10z + 25)$

Factor common monomial. **Difference of two cubes**

GUIDED PRACTICE for Examples 1 and 2

Factor the polynomial completely. **1.** $x^3 - 7x^2 + 10x$ **2.** $3y^5 - 75y^3$ **3.** $16b^5 + 686b^2$ **4.** $w^3 - 27$

FACTORING BY GROUPING For some polynomials, you can factor by grouping pairs of terms that have a common monomial factor. The pattern for factoring by grouping is shown below.

$$ra + rb + sa + sb = \mathbf{r}(\mathbf{a} + \mathbf{b}) + \mathbf{s}(\mathbf{a} + \mathbf{b})$$
$$= (\mathbf{r} + \mathbf{s})(\mathbf{a} + \mathbf{b})$$

EXAMPLE 3 Factor by grouping

Factor the polynomial $x^3 - 3x^2 - 16x + 48$ completely.

 $x^{3} - 3x^{2} - 16x + 48 = x^{2}(x - 3) - 16(x - 3)$ Factor by grouping. $= (x^2 - 16)(x - 3)$ Distributive property = (x + 4)(x - 4)(x - 3) Difference of two squares

AVOID ERRORS An expression is not factored completely until all factors, such as $x^2 - 16$, cannot be

factored further.