5.4 *Polynomial Equations*

You factored and solved quadratic equations. You will factor and solve other polynomial equations. So you can find dimensions of archaeological ruins, as in Ex. 58.

Key Vocabulary

TEKS

- factored completely
- factor by grouping

• quadratic form

In Chapter 4, you learned how to factor the following types of quadratic expressions.

Туре	Example
General trinomial	$2x^2 - 3x - 20 = (2x + 5)(x - 4)$
Perfect square trinomial	$x^2 + 8x + 16 = (x + 4)^2$
Difference of two squares	$9x^2 - 1 = (3x + 1)(3x - 1)$
Common monomial factor	$8x^2 + 20x = 4x(2x + 5)$

You can also factor polynomials with degree greater than 2. Some of these polynomials can be *factored completely* using techniques learned in Chapter 4.

KEY CONCEPT	For Your Notebook	
Factoring Polynomials		
Definition	Examples	
A factorable polynomial with integer coefficients is factored completely	$2(x + 1)(x - 4)$ and $5x^2(x^2 - 3)$ are factored completely.	
if it is written as a product of unfactorable polynomials with integer coefficients.	$3x(x^2 - 4)$ is <i>not</i> factored completely because $x^2 - 4$ can be factored as (x + 2)(x - 2).	

EXAMPLE 1) Find a common monomial factor

Factor the polynomial completely.

a. $x^3 + 2x^2 - 1$	$15x = x(x^2 + 2x - 15)$	Fa	actor common monomial.
	= x(x+5)(x-3)	Fa	actor trinomial.
b. $2y^5 - 18y^3 =$	$=2y^{3}(y^{2}-9)$	Facto	or common monomial.
=	$=2y^{3}(y+3)(y-3)$	Diffe	erence of two squares
c. $4z^4 - 16z^3 - $	+ $16z^2 = 4z^2(z^2 - 4z +$	- 4)	Factor common monomial.
	$=4z^2(z-2)^2$		Perfect square trinomial