PROBLEM SOLVING

EXAMPLE 6 on p. 348
for Exs. 59-61
59. HIGHER EDUCATION Since 1970, the number (in thousands) of males M and females F attending institutes of higher education can be modeled by

$$
M=0.091 t^{3}-4.8 t^{2}+110 t+5000 \quad \text { and } \quad F=0.19 t^{3}-12 t^{2}+350 t+3600
$$

where t is the number of years since 1970 . Write a model for the total number of people attending institutes of higher education.
TEXAS @HomeTutor for problem solving help at classzone.com
60. ELECTRONICS From 1999 to 2004, the number of DVD players D (in millions) sold in the United States and the average price per DVD player P (in dollars) can be modeled by

$$
D=4.11 t+4.44 \quad \text { and } \quad P=6.82 t^{2}-61.7 t+265
$$

where t is the number of years since 1999. Write a model for the total revenue R from DVD sales. According to the model, what was the total revenue in 2002?
TEXAS @HomeTutor for problem solving help at classzone.com
61.) BICYCLING The equation $P=0.00267 s F$ gives the power P (in horsepower) needed to keep a certain bicycle moving at speed s (in miles per hour), where F is the force (in pounds) of road and air resistance. On level ground, the equation

$$
F=0.0116 s^{2}+0.789
$$

models the force F. Write a model (in terms of s only) for the power needed to keep the bicycle moving at speed s on level ground. How much power is needed to keep the bicycle moving at 10 miles per hour?
AnimatedAlgebra at classzone.com
62. MULTI-STEP PROBLEM A dessert is made by taking a hemispherical mound of marshmallow on a 0.5 centimeter thick cookie and covering it with a chocolate shell 1 centimeter thick. Use the diagrams to write two polynomial functions in standard form: $M(r)$ for the combined volume of the marshmallow plus cookie, and $D(r)$ for the volume of the entire dessert. Then use $M(r)$ and $D(r)$ to write a function $C(r)$ for the volume of the chocolate.

63. TAKS REASONING From 1997 to 2002, the number of NCAA lacrosse teams for men L_{m} and women L_{w}, as well as the average size of a men's team S_{m} and a women's team S_{w}, can be modeled by

$$
\begin{aligned}
& L_{m}=5.57 t+182 \quad \text { and } \quad S_{m}=-0.127 t^{3}+0.822 t^{2}-1.02 t+31.5 \\
& L_{w}=12.2 t+185 \text { and } S_{w}=-0.0662 t^{3}+0.437 t^{2}-0.725 t+22.3
\end{aligned}
$$

where t is the number of years since 1997. Write a model for the total number of people N on NCAA lacrosse teams. Explain how you obtained your model.

