38. $(x+5)(x-5)$
39. $(w-9)^{2}$
40. $(y+4)^{3}$
41. $(2 c+5)^{2}$
42. $(3 t-4)^{3}$
43. $(5 p-3)(5 p+3)$
44. $(7 x-y)^{3}$
45. $(2 a+9 b)(2 a-9 b)$
46. $(3 z+7 y)^{3}$
47. TAKS REASONING Which expression is equivalent to $(3 x-2 y)^{2}$?
(A) $9 x^{2}-4 y^{2}$
(B) $9 x^{2}+4 y^{2}$
(C) $9 x^{2}+12 x y+4 y^{2}$
(D) $9 x^{2}-12 x y+4 y^{2}$

GEOMETRY Write the figure's volume as a polynomial in standard form.
48. $V=\ell w h$

49. $V=\pi r^{2} h$

50. $V=s^{3}$

51. $V=\frac{1}{3} B h$

SPECIAL PRODUCTS Verify the special product pattern by multiplying.
52. $(a+b)(a-b)=a^{2}-b^{2}$
53. $(a+b)^{2}=a^{2}+2 a b+b^{2}$
54. $(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$
55. $(a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}$
56. TAKS REASONING Let $p(x)=x^{4}-7 x+14$ and $q(x)=x^{2}-5$.
a. What is the degree of the polynomial $p(x)+q(x)$?
b. What is the degree of the polynomial $p(x)-q(x)$?
c. What is the degree of the polynomial $p(x) \cdot q(x)$?
d. In general, if $p(x)$ and $q(x)$ are polynomials such that $p(x)$ has degree m, $q(x)$ has degree n, and $m>n$, what are the degrees of $p(x)+q(x)$, $p(x)-q(x)$, and $p(x) \cdot q(x)$?
57. FINDING A PATTERN Look at the following polynomial factorizations.

$$
\begin{aligned}
& x^{2}-1=(x-1)(x+1) \\
& x^{3}-1=(x-1)\left(x^{2}+x+1\right) \\
& x^{4}-1=(x-1)\left(x^{3}+x^{2}+x+1\right)
\end{aligned}
$$

a. Factor $x^{5}-1$ and $x^{6}-1$ into the product of $x-1$ and another polynomial. Check your answers by multiplying.
b. In general, how can $x^{n}-1$ be factored? Show that this factorization works by multiplying the factors.
58. CHALLENGE Suppose $f(x)=(x+a)(x+b)(x+c)(x+d)$. If $f(x)$ is written in standard form, show that the coefficient of x^{3} is the sum of a, b, c, and d, and the constant term is the product of a, b, c, and d.

