EXAMPLE 5 Use special product patterns

a. $(3t+4)(3t-4) = (3t)^2 - 4^2$	Sum and difference
$=9t^2 - 16$	
b. $(8x - 3)^2 = (8x)^2 - 2(8x)(3) + 3^2$	Square of a binomial
$= 64x^2 - 48x + 9$	
c. $(pq+5)^3 = (pq)^3 + 3(pq)^2(5) + 3(pq)(5)^2 + 5^3$	Cube of a binomial
$= p^3 q^3 + 15p^2 q^2 + 75pq + 125$	

 \checkmark

GUIDED PRACTICE for Examples 3, 4, and 5

Find the product.

3. $(x+2)(3x^2-x-5)$ **4.** (a-5)(a+2)(a+6) **5.** $(xy-4)^3$

EXAMPLE 6 Use polynomial models

PETROLEUM Since 1980, the number *W* (in thousands) of United States wells producing crude oil and the average daily oil output per well *O* (in barrels) can be modeled by

 $W = -0.575t^2 + 10.9t + 548$ and O = -0.249t + 15.4

where *t* is the number of years since 1980. Write a model for the average *total* amount *T* of crude oil produced per day. What was the average total amount of crude oil produced per day in 2000?

DETERMINE SIGNIFICANT DIGITS

When multiplying models, round your result so that its terms have the same number of significant digits as the model with the fewest number of significant digits.

Solution

To find a model for *T*, multiply the two given models.

 $\begin{array}{rrrr} -0.575t^2+&10.9t+&548\\ \times&-&0.249t+&15.4\\ \hline\\ -&8.855t^2+&167.86t+8439.2\\ \hline\\ 0.143175t^3-&2.7141t^2-&136.452t\\ \hline\\ 0.143175t^3-&11.5691t^2+&31.408t+8439.2 \end{array}$

▶ Total daily oil output can be modeled by $T = 0.143t^3 - 11.6t^2 + 31.4t + 8440$ where *T* is measured in thousands of barrels. By substituting t = 20 into the model, you can estimate that the average total amount of crude oil produced per day in 2000 was about 5570 thousand barrels, or 5,570,000 barrels.

GUIDED PRACTICE for Example 6

6. INDUSTRY The models below give the average depth *D* (in feet) of new wells drilled and the average cost per foot *C* (in dollars) of drilling a new well. In both models, *t* represents the number of years since 1980. Write a model for the average *total* cost *T* of drilling a new well.

D = 109t + 4010 and $C = 0.542t^2 - 7.16t + 79.4$

Oil refinery in Long Beach, California