EXAMPLE 4
on p. 339
for Exs. 24-27

EXAMPLE 5
on p. 340
for Exs. 38-50
24. MUMSTNEAGHRINE The graph of a polynomial function is shown. What is true about the function's degree and leading coefficient?
(A) The degree is odd and the leading coefficient is positive.
(B) The degree is odd and the leading coefficient is negative.
(C) The degree is even and the leading coefficient is positive.

(D) The degree is even and the leading coefficient is negative.

USING END BEHAVIOR Describe the degree and leading coefficient of the polynomial function whose graph is shown.
25.

26.

(27.

DESCRIBING END BEHAVIOR Describe the end behavior of the graph of the polynomial function by completing these statements: $f(x) \rightarrow$? as $x \rightarrow-\infty$ and $f(x) \rightarrow$? as $x \rightarrow+\infty$.
28. $f(x)=10 x^{4}$
29. $f(x)=-x^{6}+4 x^{3}-3 x$
30. $f(x)=-2 x^{3}+7 x-4$
31. $f(x)=x^{7}+3 x^{4}-x^{2}$
32. $f(x)=3 x^{10}-16 x$
33. $f(x)=-6 x^{5}+14 x^{2}+20$
34. $f(x)=0.2 x^{3}-x+45$
35. $f(x)=5 x^{8}+8 x^{7}$
36. $f(x)=-x^{273}+500 x^{271}$
37. TAKS REASONING Write a polynomial function f of degree 5 such that the end behavior of the graph of f is given by $f(x) \rightarrow+\infty$ as $x \rightarrow-\infty$ and $f(x) \rightarrow-\infty$ as $x \rightarrow+\infty$. Then graph the function to verify your answer.

GRAPHING POLYNOMIIALS Graph the polynomial function.

38. $f(x)=x^{3}$
39. $f(x)=-x^{4}$
40. $f(x)=x^{5}+3$
41. $f(x)=x^{4}-2$
42. $f(x)=-x^{3}+5$
43. $f(x)=x^{3}-5 x$
44. $f(x)=-x^{4}+8 x$
45. $f(x)=x^{5}+x$
46. $f(x)=-x^{3}+3 x^{2}-2 x+5$
47. $f(x)=x^{5}+x^{2}-4$
48. $f(x)=x^{4}-5 x^{2}+6$
49. $f(x)=-x^{4}+3 x^{3}-x+1$
50. Wunsmageivine Which function is represented by the graph shown?
(A) $f(x)=\frac{1}{3} x^{3}+1$
(B) $f(x)=-\frac{1}{3} x^{3}+1$
(C) $f(x)=\frac{1}{3} x^{3}-1$
(D) $f(x)=-\frac{1}{3} x^{3}-1$

51. VISUAL THINKING Suppose $f(x) \rightarrow+\infty$ as $x \rightarrow-\infty$ and $f(x) \rightarrow-\infty$ as $x \rightarrow+\infty$. Describe the end behavior of $g(x)=-f(x)$.
52. THOSTRESFONTEE A cubic polynomial function f has leading coefficient 2 and constant term -5 . If $f(1)=0$ and $f(2)=3$, what is $f(-5)$? Explain how you found your answer.
