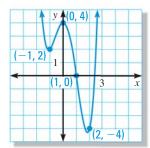
GRAPHING POLYNOMIAL FUNCTIONS To graph a polynomial function, first plot points to determine the shape of the graph's middle portion. Then use what you know about end behavior to sketch the ends of the graph.

EXAMPLE 5 Graph polynomial functions

Graph (a) $f(x) = -x^3 + x^2 + 3x - 3$ and (b) $f(x) = x^4 - x^3 - 4x^2 + 4$.

Solution

a. To graph the function, make a table of values and plot the corresponding points. Connect the points with a smooth curve and check the end behavior.


x	-3	-2	-1	0	1	2	3
у	24	3	-4	-3	0	-1	-12

(-2, 3) 1 (1, 0) 3 x (2, -1) (-1, -4) (0, -3)

The degree is odd and leading coefficient is negative. So, $f(x) \rightarrow +\infty$ as $x \rightarrow -\infty$ and $f(x) \rightarrow -\infty$ as $x \rightarrow +\infty$.

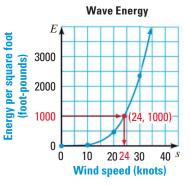
b. To graph the function, make a table of values and plot the corresponding points. Connect the points with a smooth curve and check the end behavior.

x	-3	-2	-1	0	1	2	3
y	76	12	2	4	0	-4	22

The degree is even and leading coefficient is positive. So, $f(x) \rightarrow +\infty$ as $x \rightarrow -\infty$ and $f(x) \rightarrow +\infty$ as $x \rightarrow +\infty$.

Animated Algebra at classzone.com

EXAMPLE 6 🔿 💸 TAKS REASONING: Multi-Step Problem


PHYSICAL SCIENCE The energy *E* (in foot-pounds) in each square foot of a wave is given by the model $E = 0.0029s^4$ where *s* is the wind speed (in knots). Graph the model. Use the graph to estimate the wind speed needed to generate a wave with 1000 foot-pounds of energy per square foot.

Solution

STEP 1 Make a table of values. The model only deals with positive values of *s*.

5	0	10	20	30	40
E	0	29	464	2349	7424

STEP 2 **Plot** the points and connect them with a smooth curve. Because the leading coefficient is positive and the degree is even, the graph rises to the right.

STEP 3 Examine the graph to see that $s \approx 24$ when E = 1000.

The wind speed needed to generate the wave is about 24 knots.