READING

The expression
" $x \rightarrow+\infty$ " is read as " x approaches positive infinity."

END BEHAVIOR The end behavior of a function's graph is the behavior of the graph as x approaches positive infinity $(+\infty)$ or negative infinity $(-\infty)$. For the graph of a polynomial function, the end behavior is determined by the function's degree and the sign of its leading coefficient.

KEY CONCEPT

For Your Notebook

End Behavior of Polynomial Functions

```
Degree: odd
Leading coefficient: positive
```


Degree: even

Leading coefficient: positive

Degree: odd
Leading coefficient: negative

Degree: even
Leading coefficient: negative

EXAMPLE 4 TAKS PRACTICE: Multiple Choice

What is true about the degree and leading coefficient of the polynomial function whose graph is shown?
(A) Degree is odd; leading coefficient is positive
(B) Degree is odd; leading coefficient is negative
(C) Degree is even; leading coefficient is positive
(D) Degree is even; leading coefficient is negative

From the graph, $f(x) \rightarrow-\infty$ as $x \rightarrow-\infty$ and $f(x) \rightarrow+\infty$ as $x \rightarrow+\infty$. So, the degree is odd and the leading coefficient is positive.

- The correct answer is A. (A) (B) (D)

GuIded Practice for Examples 3 and 4

Use synthetic substitution to evaluate the polynomial function for the given value of \boldsymbol{x}.
6. $f(x)=5 x^{3}+3 x^{2}-x+7 ; x=2$
7. $g(x)=-2 x^{4}-x^{3}+4 x-5 ; x=-1$
8. Describe the degree and leading coefficient of the polynomial function whose graph is shown.

