EXAMPLE 2 Evaluate by direct substitution

Use direct substitution to evaluate $f(x)=2 x^{4}-5 x^{3}-4 x+8$ when $x=3$.

$$
\begin{aligned}
f(x) & =2 x^{4}-5 x^{3}-4 x+8 & & \text { Write original function. } \\
f(3) & =2(3)^{4}-5(3)^{3}-4(3)+8 & & \text { Substitute } 3 \text { for } x . \\
& =162-135-12+8 & & \text { Evaluate powers and multiply. } \\
& =23 & & \text { Simplify. }
\end{aligned}
$$

GUIDED PRACTICE for Examples 1 and 2

Decide whether the function is a polynomial function. If so, write it in standard form and state its degree, type, and leading coefficient.

1. $f(x)=13-2 x$
2. $p(x)=9 x^{4}-5 x^{-2}+4$
3. $h(x)=6 x^{2}+\pi-3 x$

Use direct substitution to evaluate the polynomial function for the given value of \boldsymbol{x}.
4. $f(x)=x^{4}+2 x^{3}+3 x^{2}-7 ; x=-2$
5. $g(x)=x^{3}-5 x^{2}+6 x+1 ; x=4$

SYNTHETIC SUBSTITUTION Another way to evaluate a polynomial function is to use synthetic substitution. This method, shown in the next example, involves fewer operations than direct substitution.

EXAMPLE 3 Evaluate by synthetic substitution

AVOID ERRORS

The row of coefficients for $f(x)$ must include a coefficient of 0 for the "missing" x^{2}-term.

Use synthetic substitution to evaluate $f(x)$ from Example 2 when $x=3$.

Solution

STEP 1 Write the coefficients of $f(x)$ in order of descending exponents. Write the value at which $f(x)$ is being evaluated to the left.

STEP 2 Bring down the leading coefficient. Multiply the leading coefficient by the x-value. Write the product under the second coefficient. Add.

STEP 3 Multiply the previous sum by the x-value. Write the product under the third coefficient. Add. Repeat for all of the remaining coefficients. The final sum is the value of $f(x)$ at the given x-value.

Synthetic substitution gives $f(3)=23$, which matches the result in Example 2.

