5.2 Evaluate and Graph Polynomial Functions
 2A.4.B; P.1.E, P.3.A, P.3.B

Before You evaluated and graphed linear and quadratic functions. You will evaluate and graph other polynomial functions. So you can model skateboarding participation, as in Ex. 55.

Key Vocabulary

- polynomial
- polynomial function
- synthetic substitution
- end behavior

Recall that a monomial is a number, a variable, or a product of numbers and variables. A polynomial is a monomial or a sum of monomials.
A polynomial function is a function of the form

$$
f(x)=\boldsymbol{a}_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

where $a_{n} \neq 0$, the exponents are all whole numbers, and the coefficients are all real numbers. For this function, a_{n} is the leading coefficient, n is the degree, and a_{0} is the constant term. A polynomial function is in standard form if its terms are written in descending order of exponents from left to right.

Common Polynomial Functions			
Degree	Type	Standard form	Example
0	Constant	$f(x)=a_{0}$	$f(x)=-14$
1	Linear	$f(x)=a_{1} x+a_{0}$	$f(x)=5 x-7$
2	Quadratic	$f(x)=a_{2} x^{2}+a_{1} x+a_{0}$	$f(x)=2 x^{2}+x-9$
3	Cubic	$f(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$	$f(x)=x^{3}-x^{2}+3 x$
4	Quartic	$f(x)=a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$	$f(x)=x^{4}+2 x-1$

EXAMPLE 1 Identify polynomial functions

Decide whether the function is a polynomial function. If so, write it in standard form and state its degree, type, and leading coefficient.
a. $h(x)=x^{4}-\frac{1}{4} x^{2}+3$
b. $g(x)=7 x-\sqrt{3}+\pi x^{2}$
c. $f(x)=5 x^{2}+3 x^{-1}-x$
d. $k(x)=x+2^{x}-0.6 x^{5}$

Solution

a. The function is a polynomial function that is already written in standard form. It has degree 4 (quartic) and a leading coefficient of 1.
b. The function is a polynomial function written as $g(x)=\pi x^{2}+7 x-\sqrt{3}$ in standard form. It has degree 2 (quadratic) and a leading coefficient of π.
c. The function is not a polynomial function because the term $3 x^{-1}$ has an exponent that is not a whole number.
d. The function is not a polynomial function because the term 2^{x} does not have a variable base and an exponent that is a whole number.

