5.2 End Behavior of Polynomial Functions

MATERIALS•graphing calculator

QUESTION How is the end behavior of a polynomial function related to the function's equation?

Functions of the form $f(x)= \pm x^{n}$, where n is a positive integer, are examples of polynomial functions. The end behavior of a polynomial function's graph is its behavior as x approaches positive infinity $(+\infty)$ or as x approaches negative infinity $(-\infty)$.

EXPLORE Investigate the end behavior of $f(x)= \pm x^{n}$ where n is even
Graph the function. Describe the end behavior of the graph.
a. $f(x)=x^{4}$
b. $f(x)=-x^{4}$

STEP 1 Graph functions Graph each function on a graphing calculator.
a.

b.

STEP 2 Describe end behavior Summarize the end behavior of each function.

Function	As x approaches $-\infty$	As x approaches $+\infty$
a. $f(x)=x^{4}$	$f(x)$ approaches $+\infty$	$f(x)$ approaches $+\infty$
b. $f(x)=-x^{4}$	$f(x)$ approaches $-\infty$	$f(x)$ approaches $-\infty$

DrAW CONCLUSIONS Use your observations to complete these exercises

Graph the function. Then describe its end behavior as shown above.

1. $f(x)=x^{5}$
2. $f(x)=-x^{5}$
3. $f(x)=x^{6}$
4. $f(x)=-x^{6}$
5. Make a conjecture about the end behavior of each family of functions.
a. $f(x)=x^{n}$ where n is odd
b. $f(x)=-x^{n}$ where n is odd
c. $f(x)=x^{n}$ where n is even
d. $f(x)=-x^{n}$ where n is even
6. Make a conjecture about the end behavior of the function $f(x)=x^{6}-x$. Explain your reasoning.
