A TAKS PREPARATION

TAKS Obj. 6 TEKS G.5.D REVIEWING PYTHAGOREAN TAKS Obj. 8 TEKS G.8.C
 THEOREM PROBLEMS

To solve math problems involving the lengths of the sides of a right triangle, you need to be familiar with the following theorem.

The Pythagorean Theorem

Suppose a right triangle has legs of length a and b and a hypotenuse of length c. Then $a^{2}+b^{2}=c^{2}$.

EXAMPLE

What is the area of the triangle shown?

Solution

STEP 1 Identify the information you need to find. The area A of a triangle is given by the formula $A=\frac{1}{2} b h$ where b is the base and h is the height. You know the height, 6 cm , but not the base. Notice that the base is $b_{1}+b_{2}$.

STEP 2 Use the Pythagorean theorem to find b_{1} and b_{2}, which are the lengths of the legs of right triangles.

$$
\begin{array}{lll}
b_{1}^{2}+6^{2}=10^{2} & \text { Pythagorean theorem } & b_{2}^{2}+6^{2}=(12.75)^{2} \\
b_{1}^{2}=10^{2}-6^{2} & \text { Subtract } 6^{2} \text { from each side. } & b_{2}^{2}=(12.75)^{2}-6^{2} \\
b_{1}=\sqrt{10^{2}-6^{2}} & \text { Take square root of each side. } & b_{2}=\sqrt{(12.75)^{2}-6^{2}} \\
b_{1}=8 & \text { Simplify. } & b_{2}=11.25
\end{array}
$$

STEP 3 Calculate the area of the original triangle.

$$
\begin{aligned}
b_{1}+b_{2} & =8+11.25=19.25 \\
A & =\frac{1}{2} b h \\
& =\frac{1}{2}(19.25)(6) \\
& =57.75
\end{aligned}
$$

- The area of the triangle is 57.75 square centimeters.

