TAKS PREPARATION

REVIEWING PYTHAGOREAN THEOREM PROBLEMS

To solve math problems involving the lengths of the sides of a right triangle, you need to be familiar with the following theorem.

The Pythagorean Theorem

Suppose a right triangle has legs of length *a* and *b* and a hypotenuse of length *c*. Then $a^2 + b^2 = c^2$.

EXAMPLE

What is the area of the triangle shown?

Solution

- **STEP 1** Identify the information you need to find. The area *A* of a triangle is given by the formula $A = \frac{1}{2}bh$ where *b* is the base and *h* is the height. You know the height, 6 cm, but not the base. Notice that the base is $b_1 + b_2$.
- **STEP 2** Use the Pythagorean theorem to find b_1 and b_2 , which are the lengths of the legs of right triangles.

 $\begin{array}{ll} b_1^{\ 2}+6^2=10^2 & \mbox{Pythagorean theorem} & \mbox{b_2}^2+6^2=(12.75)^2$ \\ b_1^{\ 2}=10^2-6^2 & \mbox{Subtract 6}^2 \mbox{ from each side.} & \mbox{b_2}^2=(12.75)^2-6^2$ \\ b_1^{\ 2}=\sqrt{10^2-6^2} & \mbox{Take square root of each side.} & \mbox{b_2}=\sqrt{(12.75)^2-6^2$}$ \\ b_1^{\ 3}=8 & \mbox{Simplify.} & \mbox{b_2}=11.25$ \end{array}$

19.25 cm

STEP 3 **Calculate** the area of the original triangle.

 $b_1 + b_2 = 8 + 11.25 = 19.25$ Add b_1 and b_2 to find the base. $A = \frac{1}{2}bh$ $= \frac{1}{2}(19.25)(6)$

The area of the triangle is 57.75 square centimeters.

= 57.75

UNDERSTAND

SOLUTIONS Note that only the positive square root is found in Step 2. This is because lengths must

be positive numbers.