4.9

Graph and Solve Quadratic Inequalities

pp. 300-307

EXAMPLE

Solve $-2x^2 + 2x + 5 \le 0$.

The solution consists of the *x*-values for which the graph of $y = -2x^2 + 2x + 5$ lies on or below the *x*-axis. Find the graph's *x*-intercepts by letting y = 0 and using the quadratic formula to solve for *x*.

$$x = \frac{-2 \pm \sqrt{2^2 - 4(-2)(5)}}{2(-2)}$$
$$= \frac{-2 \pm \sqrt{44}}{-4} = \frac{-1 \pm \sqrt{11}}{-2}$$

$$x \approx -1.16$$
 or $x \approx 2.16$

Sketch a parabola that opens down and has -1.16 and 2.16 as *x*-intercepts. The solution of the inequality is approximately $x \le -1.16$ or $x \ge 2.16$.

EXERCISES

EXAMPLE 5 on p. 302 for Exs. 42–44

Solve the inequality by graphing. 42. $2x^2 - 11x + 5 < 0$

43.
$$-x^2 + 4x + 3 \ge 0$$

$$44. \ \frac{1}{2}x^2 + 3x - 6 > 0$$

4.10 Write Quadratic Functions and Models *pp. 309–315* **EXAMPLE** Write a quadratic function for the parabola shown. Because you are given the *x*-intercepts p = -3 and q = 2, use the intercept form y = a(x - p)(x - q) = a(x + 3)(x - 2). Use the other given point, (1, -2), to find *a*. -2 = a(1 + 3)(1 - 2) Substitute 1 for *x* and -2 for *y*. -2 = -4a Simplify coefficient of *a*. $\frac{1}{2} = a$ Solve for *a*. A quadratic function for the parabola is $y = \frac{1}{2}(x + 3)(x - 2)$.

EXERCISES

Write a quadratic function whose graph has the given characteristics.

45. <i>x</i> -intercepts: −3, 2	46. passes through:	47. vertex: (2, 7)
passes through: (3, 12)	(5, 2), (0, 2), (8, -6)	passes through: (4, 2)

48. SOCCER The parabolic path of a soccer ball that is kicked from the ground passes through the point (0, 0) and has vertex (12, 7) where the coordinates are in feet. Write a quadratic function that models the soccer ball's path.

EXAMPLES 1 and 2 on p. 309 for Exs. 45–48