4
 CHAPTER REVIEW

4.9 Graph and Solve Quadratic Inequalities

EXAMPLE

Solve $-2 x^{2}+2 x+5 \leq 0$.
The solution consists of the x-values for which the graph of $y=-2 x^{2}+2 x+5$ lies on or below the x-axis. Find the graph's x-intercepts by letting $y=0$ and using the quadratic formula to solve for x.

$$
\begin{aligned}
x & =\frac{-2 \pm \sqrt{2^{2}-4(-2)(5)}}{2(-2)} \\
& =\frac{-2 \pm \sqrt{44}}{-4}=\frac{-1 \pm \sqrt{11}}{-2} \\
x & \approx-1.16 \text { or } x \approx 2.16
\end{aligned}
$$

Sketch a parabola that opens down and has -1.16
 and 2.16 as x-intercepts. The solution of the inequality is approximately $x \leq-1.16$ or $x \geq 2.16$.

EXAMPLE 5
on p. 302
for Exs. 42-44

EXERCISES

Solve the inequality by graphing.
42. $2 x^{2}-11 x+5<0$
43. $-x^{2}+4 x+3 \geq 0$
44. $\frac{1}{2} x^{2}+3 x-6>0$

4.10 Write Quadratic Functions and Models

EXAMPLE

Write a quadratic function for the parabola shown.
Because you are given the x-intercepts $p=-3$ and $q=2$, use the intercept form $y=a(x-p)(x-q)=a(x+3)(x-2)$.

Use the other given point, $(1,-2)$, to find a.

$$
\begin{aligned}
& -2=a(1+3)(1-2) \\
& -2=-4 a
\end{aligned}
$$

$$
\text { Substitute } 1 \text { for } x \text { and }-2 \text { for } y \text {. }
$$

$$
\text { Simplify coefficient of } a \text {. }
$$

$$
\frac{1}{2}=a \quad \text { Solve for } a
$$

A quadratic function for the parabola is $y=\frac{1}{2}(x+3)(x-2)$.

EXAMPLES

1 and 2
on p. 309
for Exs. 45-48

EXERCISES

Write a quadratic function whose graph has the given characteristics.

45. x-intercepts: $-3,2$
passes through: $(3,12)$
46. passes through:
$(5,2),(0,2),(8,-6)$
47. vertex: $(2,7)$
passes through: $(4,2)$
48. SOCCER The parabolic path of a soccer ball that is kicked from the ground passes through the point $(0,0)$ and has vertex $(12,7)$ where the coordinates are in feet. Write a quadratic function that models the soccer ball's path.
