EXERCISES

EXAMPLES
2, 4, and 5
on pp. 276-278
for Exs. 29-34

Write the expression as a complex number in standard form.
29. $-9 i(2-i)$
30. $(5+i)(4-2 i)$
31. $(2-5 i)(2+5 i)$
32. $(8-6 i)+(7+4 i)$
33. $(2-3 i)-(6-5 i)$
34. $\frac{4 i}{-3+6 i}$

4.7 Complete the Square

EXAMPLE

Solve $x^{2}-8 x+13=0$ by completing the square.

$$
\begin{aligned}
x^{2}-8 x+13 & =0 & & \text { Write original equation. } \\
x^{2}-8 x & =-13 & & \text { Write left side in the form } \boldsymbol{x}^{2}+\boldsymbol{b x} . \\
x^{2}-8 x+\mathbf{1 6} & =-13+\mathbf{1 6} & & \text { Add }\left(\frac{-\mathbf{8}}{\mathbf{2}}\right)^{2}=(-\mathbf{4})^{2}=\mathbf{1 6} \text { to each side. } \\
(x-4)^{2} & =3 & & \text { Write left side as a binomial squared. } \\
x-4 & = \pm \sqrt{3} & & \text { Take square roots of each side. } \\
x & =4 \pm \sqrt{3} & & \text { Solve for } \boldsymbol{x} .
\end{aligned}
$$

EXAMPLES

3 and 4
on pp. 285-286
for Exs. 35-37

EXERCISES

Solve the equation by completing the square.
35. $x^{2}-6 x-15=0$
36. $3 x^{2}-12 x+1=0$
37. $x^{2}+3 x-1=0$

4.8 Use the Quadratic Formula and the Discriminant

EXAMPLE

Solve $3 x^{2}+6 x=-2$.

$$
\begin{aligned}
3 x^{2}+6 x & =-2 & & \text { Write original equation. } \\
3 x^{2}+6 x+2 & =0 & & \text { Write in standard form. } \\
x & =\frac{-6 \pm \sqrt{6^{2}-4(3)(2)}}{2(3)} & & \text { Use } \boldsymbol{a}=\mathbf{3}, \boldsymbol{b}=\mathbf{6}, \text { and } \boldsymbol{c}= \\
x & =\frac{-3 \pm \sqrt{3}}{3} & & \text { Simplify. }
\end{aligned}
$$

EXERCISES

EXAMPLES
1, 2, 3, and 5
on pp. 292-295
for Exs. 38-41

Use the quadratic formula to solve the equation.
38. $x^{2}+4 x-3=0$
39. $9 x^{2}=-6 x-1$
40. $6 x^{2}-8 x=-3$
41. VOLLEYBALL A person spikes a volleyball over a net when the ball is 9 feet above the ground. The volleyball has an initial vertical velocity of -40 feet per second. The volleyball is allowed to fall to the ground. How long is the ball in the air after it is spiked?

