

EXAMPLES 2, 4, and 5 on pp. 276-278 for Exs. 29-34

EXERCISES

Write the expression as a complex number in standard form.

29.
$$-9i(2-i)$$

30.
$$(5+i)(4-2i)$$

31.
$$(2-5i)(2+5i)$$

32.
$$(8-6i)+(7+4i)$$

32.
$$(8-6i)+(7+4i)$$
 33. $(2-3i)-(6-5i)$

34.
$$\frac{4i}{-3+6i}$$

Complete the Square

pp. 284-291

EXAMPLE

Solve $x^2 - 8x + 13 = 0$ by completing the square.

$$x^2 - 8x + 13 = 0$$

Write original equation.

$$x^2 - 8x = -13$$

 $x^2 - 8x = -13$ Write left side in the form $x^2 + bx$.

$$x^2 - 8x + 16 = -13 + 16$$

 $x^2 - 8x + 16 = -13 + 16$ Add $\left(\frac{-8}{2}\right)^2 = (-4)^2 = 16$ to each side.

$$(x-4)^2=3$$

 $(x-4)^2=3$ Write left side as a binomial squared.

$$x-4=\pm\sqrt{3}$$

Take square roots of each side.

$$x = 4 \pm \sqrt{3}$$

Solve for x.

EXAMPLES 3 and 4 on pp. 285-286

for Exs. 35-37

EXERCISES

Solve the equation by completing the square.

35.
$$x^2 - 6x - 15 = 0$$

36.
$$3x^2 - 12x + 1 = 0$$
 37. $x^2 + 3x - 1 = 0$

37.
$$x^2 + 3x - 1 = 0$$

Use the Quadratic Formula and the Discriminant

pp. 292-299

EXAMPLE

Solve $3x^2 + 6x = -2$.

$$3x^2 + 6x = -2$$

Write original equation.

$$3x^2 + 6x + 2 = 0$$

Write in standard form.

$$x = \frac{-6 \pm \sqrt{6^2 - 4(3)(2)}}{2(3)}$$

Use a = 3, b = 6, and c = 2 in quadratic formula.

$$x = \frac{-3 \pm \sqrt{3}}{3}$$

Simplify.

EXAMPLES

1, 2, 3, and 5 on pp. 292-295 for Exs. 38-41

EXERCISES

Use the quadratic formula to solve the equation.

38.
$$x^2 + 4x - 3 = 0$$

39.
$$9x^2 = -6x - 1$$

40.
$$6x^2 - 8x = -3$$

41. **VOLLEYBALL** A person spikes a volleyball over a net when the ball is 9 feet above the ground. The volleyball has an initial vertical velocity of -40 feet per second. The volleyball is allowed to fall to the ground. How long is the ball in the air after it is spiked?