4.2 Graph Quadratic Functions in Vertex or Intercept Form pp. 245-251

EXAMPLE

Graph $y=(x-4)(x+2)$.
Identify the x-intercepts. The quadratic function is in intercept form $y=a(x-p)(x-q)$ where $a=1, p=4$, and $q=-2$. Plot the x-intercepts at $(4,0)$ and $(-2,0)$.

Find the coordinates of the vertex.

$$
\begin{aligned}
& x=\frac{p+q}{2}=\frac{4+(-2)}{2}=1 \\
& y=(1-4)(1+2)=-9
\end{aligned}
$$

Plot the vertex at $(1,-9)$. Draw a parabola through the plotted points as shown.

EXERCISES

EXAMPLES 1,
3, and 4
on pp. 245-247
for Exs. 8-14

Graph the function. Label the vertex and axis of symmetry.
8. $y=(x-1)(x+5)$
9. $g(x)=(x+3)(x-2)$
10. $y=-3(x+1)(x-6)$
11. $y=(x-2)^{2}+3$
12. $f(x)=(x+6)^{2}+8$
13. $y=-2(x+8)^{2}-3$
14. BIOLOGY A flea's jump can be modeled by the function $y=-0.073 x(x-33)$ where x is the horizontal distance (in centimeters) and y is the corresponding height (in centimeters). How far did the flea jump? What was the flea's maximum height?

4.3 Solve $x^{2}+b x+c=0$ by Factoring

EXAMPLE

Solve $x^{2}-13 x-48=0$.
Use factoring to solve for x.

$$
\begin{array}{rlrlrl}
x^{2}-13 x-48 & =0 & & & \text { Write original equation. } \\
(x-16)(x+3) & =0 & & & \text { Factor. } \\
x-16 & =0 & \text { or } & x+3 & =0 & \\
\text { Zero product property } \\
x & =16 & \text { or } & x & =-3 & \\
\text { Solve for } x .
\end{array}
$$

EXERCISES

EXAMPLE 3
on p. 254
for Exs. 15-21

Solve the equation.

15. $x^{2}+5 x=0$
16. $z^{2}=63 z$
17. $s^{2}-6 s-27=0$
18. $k^{2}+12 k-45=0$
19. $x^{2}+18 x=-81$
20. $n^{2}+5 n=24$
21. URBAN PLANNING A city wants to double the area of a rectangular playground that is 72 feet by 48 feet by adding the same distance x to the length and the width. Write and solve an equation to find the value of x.
