CHAPTER REVIEW

TEXAS @HomeTutor

- classzone.com
- Multi-Language Glossary
- Vocabulary practice

REVIEW KEY VOCABULARY

- quadratic function, p. 236
- standard form of a quadratic function, *p. 236*
- parabola, *p. 236*
- vertex, *p. 236*
- axis of symmetry, p. 236
- minimum, maximum value, *p. 238*
- vertex form, p. 245
- intercept form, p. 246
- monomial, binomial, trinomial, *p. 252*
- quadratic equation, p. 253
- VOCABULARY EXERCISES

- standard form of a quadratic equation, *p. 253*
- root of an equation, p. 253
- zero of a function, p. 254
- square root, p. 266
- radical, radicand, p. 266
- rationalizing the denominator, *p. 267*
- conjugates, p. 267
- imaginary unit *i*, *p*. 275
- complex number, p. 276
- standard form of a complex number, p. 276

- imaginary number, p. 276
- pure imaginary number, p. 276
- complex conjugates, p. 278
- complex plane, p. 278
- absolute value of a complex number, p. 279
- completing the square, p. 284
- quadratic formula, p. 292
- discriminant, p. 294
- quadratic inequality in two variables, *p. 300*
- quadratic inequality in one variable, *p. 302*
- best-fitting quadratic model, p. 311
- **1. WRITING** Given a quadratic function in standard form, explain how to determine whether the function has a maximum value or a minimum value.
- **2.** Copy and complete: A(n) <u>?</u> is a complex number a + bi where a = 0 and $b \neq 0$.
- **3.** Copy and complete: A function of the form $y = a(x h)^2 + k$ is written in <u>?</u>.
- 4. Give an example of a quadratic equation that has a negative discriminant.

REVIEW EXAMPLES AND EXERCISES

Use the review examples and exercises below to check your understanding of the concepts you have learned in each lesson of Chapter 4.

EXERCISES

Graph the function. Label the vertex and axis of symmetry.

on p. 238 for Exs. 5–7

EXAMPLE 3

5. $y = x^2 + 2x - 3$

6. $y = -3x^2 + 12x - 7$ **7.** $f(x) = -x^2 - 2x - 6$