CHAPTER SUMMARY

Animated Algebra classzone.com **Electronic Function Library**

For Your Notebook

BIG IDEAS

Graphing and Writing Quadratic Functions in Several Forms

You can graph or write a quadratic function in standard form, vertex form, or intercept form.

Form	Equation	Information about quadratic function
Standard form	$y = ax^2 + bx + c$	• The <i>x</i> -coordinate of the vertex is $-\frac{b}{2a}$.
		• The axis of symmetry is $x = -\frac{b}{2a}$.
Vertex form	$y = a(x-h)^2 + k$	• The vertex is (<i>h</i> , <i>k</i>).
		• The axis of symmetry is $x = h$.
Intercept form	y = a(x-p)(x-q)	• The <i>x</i> -intercepts are <i>p</i> and <i>q</i> .
		• The axis of the symmetry is $x = \frac{p+q}{2}$.

Solving Quadratic Equations Using a Variety of Methods

There are several different methods you can use to solve a quadratic equation.

Equation contains:	Example	Method
Binomial without <i>x</i> -term	$5x^2-45=0$	Isolate the x^2 -term. Then take square roots of each side.
Factorable trinomial	$x^2-5x+6=0$	Factor the trinomial. Then use the zero product property.
Unfactorable trinomial	$x^2 - 8x + 35 = 0$	Complete the square, <i>or</i> use the quadratic formula.

Big Idea [2]

TEKS 2A.8.D

Performing Operations with Square Roots and Complex Numbers

You can use the following properties to simplify expressions involving square roots or complex numbers.

roots If $a > 0$ and $b > 0$, then $\forall ab = \forall a \cdot \forall b$ and $\sqrt{\frac{a}{b}} = \frac{\forall a}{\sqrt{b}}$.	
Complex numbers • The imaginary unit <i>i</i> is defined as $i = \sqrt{-1}$, so that $i^2 = -1$. • If <i>r</i> is a positive real number, then $\sqrt{-r} = i\sqrt{r}$ and $(i\sqrt{r})^2 = -r$. • $(a + bi) + (c + di) = (a + c) + (b + d)i$ • $(a + bi) - (c + di) = (a - c) + (b - d)i$ • $ a + bi = \sqrt{a^2 + b^2}$	