51. MidNEREASURIE The Garabit Viaduct in France has a parabolic arch as part of its support. Three points on the parabola that models the arch are $(0,0),(40,38.2)$, and $(165,0)$ where x and y are measured in meters. Which point is also on the parabola?
(A) $(10,-11.84)$
(B) $(26.74,25)$
(C) $(80,51.95)$
(D) $(125,45)$
52. CHALLENGE Let R be the maximum number of regions into which a circle can be divided using n chords. For example, the diagram shows that $R=4$ when $n=2$. Copy and complete the table. Then write a quadratic model giving R as a function of n.

\boldsymbol{n}	0	1	2	3	4	5	6
\boldsymbol{R}	$?$	$?$	4	$?$	$?$	$?$	$?$

MIXED REVIEW FOR TAKS

TAKS PRACTICE at classzone.com

REVIEW

Skills Review
Handbook p. 998
TAKS Workbook

REVIEW

Lesson 2.3;
TAKS Workbook
53. TAKS PRACTICE Charlie receives some money for his birthday. He deposits one third of the money in the bank. He purchases a concert ticket for $\$ 45$. Then he spends half of the remaining money on dinner. Charlie has $\$ 8.50$ left. How much money did he receive for his birthday? TAKS Obj. 10
(A) $\$ 80$
(B) $\$ 93$
(C) $\$ 118$
(D) $\$ 124$
54. TAKS PRACTICE Which equation represents a line that is parallel to the line that passes through $(-4,9)$ and $(5,-3)$? TAKS Obj. 7
(F) $-4 x+3 y=29$
(G) $2 x+3 y=9$
(H) $4 x+3 y=-12$
(J) $2 x-3 y=11$

QUIZ for Lessons 4.8-4.10

Use the quadratic formula to solve the equation. (p. 292)

1. $x^{2}-4 x+5=0$
2. $2 x^{2}-8 x+1=0$
3. $3 x^{2}+5 x+4=0$

Graph the inequality. (p. 300)
4. $y<-3 x^{2}$
5. $y>-x^{2}+2 x$
6. $y \geq-x^{2}+2 x+3$

Solve the inequality. (p. 300)
7. $0 \geq x^{2}+5$
8. $12 \leq x^{2}-7 x$
9. $2 x^{2}+2>-5 x$

Write a quadratic function whose graph has the given characteristics. (p. 309)
10. vertex: $(5,7)$
passes through: $(3,11)$
11. x-intercepts: $-3,5$
passes through: $(7,-40)$
12. passes through:
$(-1,2),(4,-23),(2,-7)$
13. SPORTS A person throws a baseball into the air with an initial vertical velocity of 30 feet per second and then lets the ball hit the ground. The ball is released 5 feet above the ground. How long is the ball in the air? (p. 292)

