PROBLEM SOLVING

EXAMPLES 1 and 3 on pp. 309–310 for Exs. 46–47	46.	ANTENNA DISH Three points on the parabola formed by the cross section of an antenna dish are (0, 4), (2, 3.25), and (5, 3.0625). Write a quadratic function that models the cross section.													
		TEXAS @HomeTutor for problem solving help at classzone.com													
	47.	 FOOTBALL Two points on the parabolic path of a kicked football are (0, 0) and the vertex (20, 15). Write a quadratic function that models the path. TEXAS @HomeTutor for problem solving help at classzone.com 													
EXAMPLE 4	48.	MULTI-STEP PROBLEM The bar graph shows the													
on p. 311 for Exs. 48–50		average number of hours per person per year spent on the Internet in the United States for the years 1997–2001.						150 100 50	early Time on the Internet						
		a. Use a graphing calculator to create a scatter plot.									82	106	-		
		 b. Use the quadratic regression feature of the calculator to find the best-fitting quadratic model for the data. c. Use your model from part (b) to predict the average number of hours a person will spend on the Internet in 2010. 							34	54					
									1997	1998	1999	2000	2001		
	49.	RUNNING The table shows how wind affects a runner's performance in the 200 meter dash. Positive wind speeds correspond to tailwinds, and negative wind speeds correspond to headwinds. The change t in finishing time is the difference beween the runner's time when the wind speed is s and the runner's time when there is no wind.													
		Wind speed (m/sec), s	-6	-4	-	-2	0	2		4	6	1	5		
		Change in finishing time (sec), t	2.28	1.42	2 0.	.67	0	-0.5	7 -	1.05	-1.4	-1.42			
	50.	 a. Use a graphing calculator to find the best-fitting quadratic model. b. Predict the change in finishing time when the wind speed is 10 m/sec. c. MULTIPLE REPRESENTATIONS The table shows the number of U.S. households (in millions) with color televisions from 1970 through 2000. 													
		Years since 1970	0	5	10	15	20	2	5	30					
		Households with color TVs (millions)	21	47	63	78	90	9	4	101					
		a. Drawing a Graph Make a scatter plot of the data. Draw the parabola that you think best fits the data.													
		b. Writing a Function parabola. Use the p													
		c. Making a Table Use your function from part (b) to make a table of data for the years listed in the original table above. <i>Compare</i> the numbers of households given by your function with the numbers in the original table.													

1