PROBLEM SOLVING

EXAMPLES
1 and 3
on pp. 309-310
for Exs. 46-47
46. ANTENNA DISH Three points on the parabola formed by the cross section of an antenna dish are $(0,4),(2,3.25)$, and $(5,3.0625)$. Write a quadratic function that models the cross section.
TEXAS @HomeTutor for problem solving help at classzone.com

47. FOOTBALL Two points on the parabolic path of a kicked football are $(0,0)$ and the vertex $(20,15)$. Write a quadratic function that models the path.
TEXAS @HomeTutor for problem solving help at classzone.com
48. MULTI-STEP PROBLEM The bar graph shows the average number of hours per person per year spent on the Internet in the United States for the years 1997-2001.
a. Use a graphing calculator to create a scatter plot.
b. Use the quadratic regression feature of the calculator to find the best-fitting quadratic model for the data.
c. Use your model from part (b) to predict the average number of hours a person will spend on
 the Internet in 2010.

a. Use a graphing calculator to find the best-fitting quadratic model.
b. Predict the change in finishing time when the wind speed is $10 \mathrm{~m} / \mathrm{sec}$.
50. MULTIPLE REPRESENTATIONS The table shows the number of U.S. households (in millions) with color televisions from 1970 through 2000.

Years since 1970	0	5	10	15	20	25	30
Households with color TVs (millions)	21	47	63	78	90	94	101

a. Drawing a Graph Make a scatter plot of the data. Draw the parabola that you think best fits the data.
b. Writing a Function Estimate the coordinates of three points on the parabola. Use the points to write a quadratic function for the data.
c. Making a Table Use your function from part (b) to make a table of data for the years listed in the original table above. Compare the numbers of households given by your function with the numbers in the original table.

