WRITING IN INTERCEPT FORM Write a quadratic function in intercept form whose graph has the given x-intercepts and passes through the given point.

20. <i>x</i> -intercepts: 2, 5 point: (4, -2)	21. <i>x</i> -intercepts: -3, 0 point: (2, 10)	22. <i>x</i> -intercepts: -1, 4 point: (2, 4)
23. <i>x</i> -intercepts: 3, 7 point: (6, -9)	24. <i>x</i> -intercepts: -5, -1 point: (-7, -24)	25. <i>x</i> -intercepts: -6, 3 point: (0, -9)

ERROR ANALYSIS Describe and correct the error in writing a quadratic function whose graph has the given x-intercepts or vertex and passes through the given point.

EXAMPLE 3

on p. 310 for Exs. 28-39

WRITING IN STANDARD FORM Write a quadratic function in standard form for the parabola shown.

WRITING IN STANDARD FORM Write a quadratic function in standard form for the parabola that passes through the given points.

31. (-4, -3), (0, -2), (1, 7)	32. (-2, -4), (0, -10), (3, -7)	33. (-2, 4), (0, 5), (1, -11)
34. (-1, -1), (1, 11), (3, 7)	35. (-1, 9), (1, 1), (3, 17)	36. (-6, -1), (-3, -4), (3, 8)
37. (-2, -13), (2, 3), (4, 5)	38. (-6, 29), (-4, 12), (2, -3)	39. (-3, -2), (3, 10), (6, -2)

WRITING QUADRATIC FUNCTIONS Write a quadratic function whose graph has the given characteristics.

40. passes through:	41. <i>x</i> -intercepts: -11, 3	42. vertex: (4.5, 7.25)
(-0.5, -1), (2, 8), (11, 25)	passes through: (1, –192)	passes through: $(7, -3)$

43. TAKS REASONING Draw a parabola that passes through (-2, 3). Write a function for the parabola in standard form, intercept form, and vertex form.

44. \downarrow TAKS REASONING Suppose you are given a set of data pairs (x, y). Describe how you can use ratios to determine whether the data can be modeled by a quadratic function of the form $y = ax^2$.

45. CHALLENGE Find a function of the form $y = ax^2 + bx + c$ whose graph passes through (1, -4), (-3, -16), and (7, 14). Explain what the model tells you about the points.

(2.

-2)

2