4.10 2A.1.B, 2A.6.B, 2A.6.C, 2A.8.A
 Write Quadratic Functions and Models

Why?

Before
 Now

You wrote linear functions and models. You will write quadratic functions and models.
 So you can model the cross section of parabolic dishes, as in Ex. 46.

Key Vocabulary

- best-fitting quadratic model

In Lessons 4.1 and 4.2, you learned how to graph quadratic functions. In this lesson, you will write quadratic functions given information about their graphs.

EXAMPLE 1 Write a quadratic function in vertex form

Write a quadratic function for the parabola shown.

Solution

Use vertex form because the vertex is given.

$$
\begin{array}{ll}
y=a(x-h)^{2}+k & \text { Vertex form } \\
y=a(x-1)^{2}-2 & \text { Substitute } \mathbf{1} \text { for } \boldsymbol{h} \text { and -2 for } \boldsymbol{k}
\end{array}
$$

Use the other given point, $(3,2)$, to find a.

$$
\begin{array}{ll}
2=a(3-1)^{2}-2 & \text { Substitute } 3 \text { for } x \text { and } 2 \text { for } y . \\
2=4 a-2 & \text { Simplify coefficient of } a . \\
1=a & \text { Solve for } a .
\end{array}
$$

- A quadratic function for the parabola is $y=(x-1)^{2}-2$.

EXAMPLE 2 Write a quadratic function in intercept form

Write a quadratic function for the parabola shown.

Solution

Use intercept form because the x-intercepts are given.

$$
\begin{array}{ll}
y=a(x-p)(x-q) & \text { Intercept form } \\
y=a(x+1)(x-4) & \text { Substitute -1 for } p \text { and } 4 \text { for } \boldsymbol{q} .
\end{array}
$$

Use the other given point, $(3,2)$, to find a.

$$
\begin{aligned}
2 & =a(3+1)(3-4) & & \text { Substitute } 3 \text { for } x \text { and } 2 \text { for } y . \\
2 & =-4 a & & \text { Simplify coefficient of } a . \\
-\frac{1}{2} & =a & & \text { Solve for } a .
\end{aligned}
$$

A quadratic function for the parabola is $y=-\frac{1}{2}(x+1)(x-4)$.

