75. SOCCER The path of a soccer ball kicked from the ground can be modeled by

$$
y=-0.0540 x^{2}+1.43 x
$$

where x is the horizontal distance (in feet) from where the ball was kicked and y is the corresponding height (in feet).
a. A soccer goal is 8 feet high. Write and solve an inequality to find at what values of x the ball is low enough to go into the goal.
b. A soccer player kicks the ball toward the goal from a distance of 15 feet away. No one is blocking the goal. Will the player score a goal? Explain your reasoning.
76. MULTI-STEP PROBLEM A truck that is 11 feet tall and 7 feet wide is traveling under an arch. The arch can be modeled by

$$
y=-0.0625 x^{2}+1.25 x+5.75
$$

where x and y are measured in feet.
a. Will the truck fit under the arch? Explain your reasoning.
b. What is the maximum width that a truck 11 feet tall can have and still make it under the arch?
c. What is the maximum height that a truck 7 feet
 wide can have and still make it under the arch?
77. ChALLENGE For clear blue ice on lakes and ponds, the maximum weight w (in tons) that the ice can support is given by

$$
w(x)=0.1 x^{2}-0.5 x-5
$$

where x is the thickness of the ice (in inches).
a. Calculate What thicknesses of ice can support a weight of 20 tons?
b. Interpret Explain how you can use the graph of $w(x)$ to determine the minimum x-value in the domain for which the function gives meaningful results.

MIXED REVIEW FOR TAKS

REVIEW

Lesson 2.5;
TAKS Workbook

REVIEW

 TAKS Preparation p. 902;TAKS Workbook
78. TAKS PRACTICE Rachel is a cross-country runner. Her coach recorded the data shown at the right during a timed practice run. If Rachel continues to run at the same rate, what is the approximate distance she will run in 25 minutes? TAKS Obj. 3
(A) 4.2 km
(B) 5 km
(C) 6 km
(D) 10 km

Time (minutes)	Distance (kilometers)
6	1.2
12	2.4
15	3

79. TAKS PRACTICE Which set of dimensions corresponds to a pyramid similar to the one shown? TAKS Obj. 8
(F) $w=1$ unit, $\ell=2$ units, $h=4$ units
(G) $w=2$ units, $\ell=3$ units, $h=6$ units
(H) $w=3$ units, $\ell=4$ units, $h=8$ units
(J) $w=4$ units, $\ell=6$ units, $h=12$ units
