for Exs. 35-43

SOLVING BY GRAPHING Solve the inequality by graphing.
35. $x^{2}-6 x<0$
36. $x^{2}+8 x \leq-7$
37. $x^{2}-4 x+2>0$
38. $x^{2}+6 x+3>0$
39. $3 x^{2}+2 x-8 \leq 0$
40. $3 x^{2}+5 x-3<1$
41. $-6 x^{2}+19 x \geq 10$
42. $-\frac{1}{2} x^{2}+4 x \geq 1$
43. $4 x^{2}-10 x-7<10$
44. TAKS REASONING What is the solution of $3 x^{2}-x-4>0$?
(A) $x<-1$ or $x>\frac{4}{3}$
(B) $-1<x<\frac{4}{3}$
(C) $x<-\frac{4}{3}$ or $x>1$
(D) $1<x<\frac{4}{3}$
45. TAKS REASONING What is the solution of $2 x^{2}+9 x \leq 56$?
(A) $x \leq-8$ or $x \geq 3.5$
(B) $-8 \leq x \leq 3.5$
(C) $x \leq 0$ or $x \geq 4.5$
(D) $0 \leq x \leq 4.5$

SOLVING ALGEBRAICALLY Solve the inequality algebraically.
46. $4 x^{2}<25$
47. $x^{2}+10 x+9<0$
48. $x^{2}-11 x \geq-28$
49. $3 x^{2}-13 x>10$
50. $2 x^{2}-5 x-3 \leq 0$
51. $4 x^{2}+8 x-21 \geq 0$
52. $-4 x^{2}-x+3 \leq 0$
53. $5 x^{2}-6 x-2 \leq 0$
54. $-3 x^{2}+10 x>-2$
55. $-2 x^{2}-7 x \geq 4$
56. $3 x^{2}+1<15 x$
57. $6 x^{2}-5>8 x$
58. GRAPHING CALCULATOR In this exercise, you will use a different graphical method to solve Example 6 on page 303.
a. Enter the equations $y=7.51 x^{2}-16.4 x+35.0$ and $y=100$ into a graphing calculator.
b. Graph the equations from part (a) for $0 \leq x \leq 9$ and $0 \leq y \leq 300$.
c. Use the intersect feature to find the point where the graphs intersect.
d. During what years was the number of participating teams greater than 100? Explain your reasoning.

CHOOSING A METHOD Solve the inequality using any method.

59. $8 x^{2}-3 x+1<10$
60. $4 x^{2}+11 x+3 \geq-3$
61. $-x^{2}-2 x-1>2$
62. $-3 x^{2}+4 x-5 \leq 2$
63. $x^{2}-7 x+4>5 x-2$
64. $2 x^{2}+9 x-1 \geq-3 x+1$
65. $3 x^{2}-2 x+1 \leq-x^{2}+1$
66. $5 x^{2}+x-7<3 x^{2}-4 x$
67. $6 x^{2}-5 x+2<-3 x^{2}+x$
68. TAKS REASONING Write a quadratic inequality in one variable that has a solution of $x<-2$ or $x>5$.
69. ChALLENGE The area A of the region bounded by a parabola and a horizontal line is given by $A=\frac{2}{3} b h$ where b and h are as defined in the diagram. Find the area of the region determined by each pair of inequalities.
a. $y \leq-x^{2}+4 x$
b. $y \geq x^{2}-4 x-5$ $y \leq 3$

