EXAMPLE 6 Use a quadratic inequality as a model

ROBOTICS The number T of teams that have participated in a robot-building competition for high school students can be modeled by

$$
T(x)=7.51 x^{2}-16.4 x+35.0,0 \leq x \leq 9
$$

where x is the number of years since 1992. For what years was the number of teams greater than 100 ?

Solution

You want to find the values of x for which:

$$
\begin{aligned}
T(x) & >100 \\
7.51 x^{2}-16.4 x+35.0 & >100 \\
7.51 x^{2}-16.4 x-65 & >0
\end{aligned}
$$

Graph $y=7.51 x^{2}-16.4 x-65$ on the domain
 $0 \leq x \leq 9$. The graph's x-intercept is about 4.2.
The graph lies above the x-axis when $4.2<x \leq 9$.

- There were more than 100 teams participating in the years 1997-2001.

EXAMPLE 7 Solve a quadratic inequality algebraically

Solve $x^{2}-2 x>15$ algebraically.

Solution

First, write and solve the equation obtained by replacing $>$ with $=$.

$$
\begin{array}{rll}
x^{2}-2 x & =15 & \\
\text { Write equation that corresponds to original inequality. } \\
x^{2}-2 x-15 & =0 & \text { Write in standard form. } \\
(x+3)(x-5) & =0 & \text { Factor. } \\
x=-3 \text { or } x=5 & \text { Zero product property }
\end{array}
$$

The numbers -3 and 5 are the critical x-values of the inequality $x^{2}-2 x>15$. Plot -3 and 5 on a number line, using open dots because the values do not satisfy the inequality. The critical x-values partition the number line into three intervals. Test an x-value in each interval to see if it satisfies the inequality.

Guided Practice for Examples 6 and 7

6. ROBOTICS Use the information in Example 6 to determine in what years at least 200 teams participated in the robot-building competition.
7. Solve the inequality $2 x^{2}-7 x>4$ algebraically.
