ONE-VARIABLE INEQUALITIES A quadratic inequality in one variable can be written in one of the following forms:

$$
a x^{2}+b x+c<0 \quad a x^{2}+b x+c \leq 0 \quad a x^{2}+b x+c>0 \quad a x^{2}+b x+c \geq 0
$$

You can solve quadratic inequalities using tables, graphs, or algebraic methods.

EXAMPLE 4 Solve a quadratic inequality using a table

Solve $x^{2}+x \leq 6$ using a table.

Solution

Rewrite the inequality as $x^{2}+x-6 \leq 0$. Then make a table of values.
MAKE A TABLE

To give the exact solution, your table needs to include the x-values for which the value of the quadratic expression is 0 .

x	-5	-4	-3	-2	-1	0	1	2	3	4
$x^{2}+x-6$	14	6	0	-4	-6	-6	-4	0	6	14

Notice that $x^{2}+x-6 \leq 0$ when the values of x are between -3 and 2 , inclusive.
The solution of the inequality is $-3 \leq x \leq 2$.

GRAPHING TO SOLVE INEQUALITIES Another way to solve $a x^{2}+b x+c<0$ is to first graph the related function $y=a x^{2}+b x+c$. Then, because the inequality symbol is <, identify the x-values for which the graph lies below the x-axis. You can use a similar procedure to solve quadratic inequalities that involve $\leq,>$, or \geq.

EXAMPLE 5 Solve a quadratic inequality by graphing

Solve $2 x^{2}+x-4 \geq 0$ by graphing.

Solution

The solution consists of the x-values for which the graph of $y=2 x^{2}+x-4$ lies on or above the x-axis. Find the graph's x-intercepts by letting $y=0$ and using the quadratic formula to solve for x.

$$
\begin{aligned}
& 0=2 x^{2}+x-4 \\
& x=\frac{-1 \pm \sqrt{1^{2}-4(2)(-4)}}{2(2)} \\
& x=\frac{-1 \pm \sqrt{33}}{4} \\
& x \approx 1.19 \text { or } x \approx-1.69
\end{aligned}
$$

Sketch a parabola that opens up and has 1.19 and -1.69 as x-intercepts. The graph lies on or above the x-axis to the left of (and including) $x=-1.69$ and to the right of (and including) $x=1.19$.

- The solution of the inequality is approximately $x \leq-1.69$ or $x \geq 1.19$.

GUIDED PRACTICE for Examples 4 and 5

5. Solve the inequality $2 x^{2}+2 x \leq 3$ using a table and using a graph.
