ONE-VARIABLE INEQUALITIES A **quadratic inequality in one variable** can be written in one of the following forms:

 $ax^{2} + bx + c < 0$ $ax^{2} + bx + c \le 0$ $ax^{2} + bx + c \ge 0$ $ax^{2} + bx + c \ge 0$

You can solve quadratic inequalities using tables, graphs, or algebraic methods.

EXAMPLE 4 Solve a quadratic inequality using a table

Solve $x^2 + x \le 6$ using a table.

Solution

Rewrite the inequality as $x^2 + x - 6 \le 0$. Then make a table of values.

MAKE A TABLE

To give the exact solution, your table needs to include the *x*-values for which the value of the quadratic expression is 0.

x	-5	-4	-3	-2	-1	0	1	2	3	4
$x^2 + x - 6$	14	6	0	-4	-6	-6	-4	0	6	14

Notice that $x^2 + x - 6 \le 0$ when the values of *x* are between -3 and 2, inclusive.

The solution of the inequality is $-3 \le x \le 2$.

GRAPHING TO SOLVE INEQUALITIES Another way to solve $ax^2 + bx + c < 0$ is to first graph the related function $y = ax^2 + bx + c$. Then, because the inequality symbol is <, identify the *x*-values for which the graph lies *below* the *x*-axis. You can use a similar procedure to solve quadratic inequalities that involve \leq , >, or \geq .

EXAMPLE 5 Solve a quadratic inequality by graphing

Solve $2x^2 + x - 4 \ge 0$ by graphing.

Solution

The solution consists of the *x*-values for which the graph of $y = 2x^2 + x - 4$ lies on or above the *x*-axis. Find the graph's *x*-intercepts by letting y = 0 and using the quadratic formula to solve for *x*.

$0 = 2x^2 + x - 4$	1 y
$x = \frac{-1 \pm \sqrt{1^2 - 4(2)(-4)}}{2(2)}$	-5 -1.69 1.19 x
$x = \frac{-1 \pm \sqrt{33}}{4}$	$y = 2x^2 + y - 4$
$x \approx 1.19$ or $x \approx -1.69$	

Sketch a parabola that opens up and has 1.19 and -1.69 as *x*-intercepts. The graph lies on or above the *x*-axis to the left of (and including) x = -1.69 and to the right of (and including) x = 1.19.

▶ The solution of the inequality is approximately $x \le -1.69$ or $x \ge 1.19$.

GUIDED PRACTICE for Examples 4 and 5

5. Solve the inequality $2x^2 + 2x \le 3$ using a table and using a graph.