EXAMPLE 2 Use a quadratic inequality in real life

RAPPELLING A manila rope used for rappelling down a cliff can safely support a weight W (in pounds) provided

$$
W \leq 1480 d^{2}
$$

where d is the rope's diameter (in inches). Graph the inequality.

Solution

Graph $W=1480 d^{2}$ for nonnegative values of d. Because the inequality symbol is \leq, make the parabola solid. Test a point inside the parabola, such as $(1,2000)$.

$$
\begin{aligned}
W & \leq 1480 d^{2} \\
2000 & \stackrel{?}{\leq} 1480(1)^{2} \\
2000 & \leq 1480 x
\end{aligned}
$$

Because (1,2000) is not a solution, shade the region below the parabola.

SYSTEMS OF QUADRATIC INEQUALITIES Graphing a system of quadratic inequalities is similar to graphing a system of linear inequalities. First graph each inequality in the system. Then identify the region in the coordinate plane common to all of the graphs. This region is called the graph of the system.

EXAMPLE 3 Graph a system of quadratic inequalities

Graph the system of quadratic inequalities.

$$
y \leq-x^{2}+4 \quad \text { Inequality } 1
$$

$$
y>x^{2}-2 x-3 \quad \text { Inequality } 2
$$

Solution

STEP 1 Graph $y \leq-x^{2}+4$. The graph is the red region inside and including the parabola $y=-x^{2}+4$.

STEP 2 Graph $y>x^{2}-2 x-3$. The graph is the blue region inside (but not including) the parabola $y=x^{2}-2 x-3$.

STEP 3 Identify the purple region where the two graphs overlap. This region is the graph of the system.

Guided Practice for Examples 1, 2, and 3
Graph the inequality.

1. $y>x^{2}+2 x-8$
2. $y \leq 2 x^{2}-3 x+1$
3. $y<-x^{2}+4 x+2$
4. Graph the system of inequalities consisting of $y \geq x^{2}$ and $y<-x^{2}+5$.
