EXAMPLE 2 Use a quadratic inequality in real life

RAPPELLING A manila rope used for rappelling down a cliff can safely support a weight W (in pounds) provided

 $W \leq 1480d^2$

where *d* is the rope's diameter (in inches). Graph the inequality.

Solution

Graph $W = 1480d^2$ for nonnegative values of d. Because the inequality symbol is \leq , make the parabola solid. Test a point inside the parabola, such as (1, 2000).

> $W \le 1480d^2$ 2000 $\stackrel{?}{\le} 1480(1)^2$ 2000 $\le 1480 \times$

Because (1, 2000) is not a solution, shade the region below the parabola.

SYSTEMS OF QUADRATIC INEQUALITIES Graphing a *system* of quadratic inequalities is similar to graphing a system of linear inequalities. First graph each inequality in the system. Then identify the region in the coordinate plane common to all of the graphs. This region is called the *graph of the system*.

EXAMPLE 3 Graph a system of quadratic inequalities

Graph the system of quadratic inequalities.

 $y \le -x^2 + 4$ Inequality 1 $y > x^2 - 2x - 3$ Inequality 2

Solution

STEP 1 Graph $y \le -x^2 + 4$. The graph is the red region inside and including the parabola $y = -x^2 + 4$.

- *STEP 2* Graph $y > x^2 2x 3$. The graph is the blue region inside (but not including) the parabola $y = x^2 2x 3$.
- *STEP 3* Identify the purple region where the two graphs overlap. This region is the graph of the system.

GUIDED PRACTICE

for Examples 1, 2, and 3

Graph the inequality.

1.
$$y > x^2 + 2x - 8$$
 2. y

- $\leq 2x^2 3x + 1$ **3.** $y < -x^2 + 4x + 2$
- **4.** Graph the system of inequalities consisting of $y \ge x^2$ and $y < -x^2 + 5$.