4.9
 2A.3.A, 2A.3.B,
 Graph and Solve Quadratic Inequalities

You graphed and solved linear inequalities. You will graph and solve quadratic inequalities. So you can model the strength of a rope, as in Example 2.

Key Vocabulary

- quadratic inequality in two variables
- quadratic inequality in one variable

A quadratic inequality in two variables can be written in one of the following forms:
$y<a x^{2}+b x+c \quad y \leq a x^{2}+b x+c \quad y>a x^{2}+b x+c \quad y \geq a x^{2}+b x+c$
The graph of any such inequality consists of all solutions (x, y) of the inequality.

KEY CONCEPT
 For Your Notebook

Graphing a Quadratic Inequality in Two Variables

To graph a quadratic inequality in one of the forms above, follow these steps:
STEP 1 Graph the parabola with equation $y=a x^{2}+b x+c$. Make the parabola dashed for inequalities with $<$ or $>$ and solid for inequalities with \leq or \geq.
STEP 2 Test a point (x, y) inside the parabola to determine whether the point is a solution of the inequality.
STEP 3 Shade the region inside the parabola if the point from Step 2 is a solution. Shade the region outside the parabola if it is not a solution.

AVOID ERRORS

Be sure to use a dashed parabola if the symbol is $>$ or $<$ and a solid parabola if the symbol is \geq or \leq.

EXAMPLE 1 Graph a quadratic inequality

Graph $y>x^{2}+3 x-4$.

Solution

STEP 1 Graph $y=x^{2}+3 x-4$. Because the inequality symbol is $>$, make the parabola dashed.

STEP 2 Test a point inside the parabola, such as $(0,0)$.

$$
\begin{aligned}
& y>x^{2}+3 x-4 \\
& 0 \stackrel{?}{ } 0^{2}+3(0)-4 \\
& 0>-4
\end{aligned}
$$

So, $(0,0)$ is a solution of the inequality.
STEP 3 Shade the region inside the parabola.

[^0]
[^0]: AnimatedAlgebra at classzone.com

