73. TAKS REASONING You can model the position (x, y) of a moving object using a pair of parametric equations. Such equations give x and y in terms of a third variable t that represents time. For example, suppose that when a basketball player attempts a free throw, the path of the basketball can be modeled by the parametric equations

$$
\begin{aligned}
& x=20 t \\
& y=-16 t^{2}+21 t+6
\end{aligned}
$$

where x and y are measured in feet, t is measured in seconds, and the player's feet are at $(0,0)$.
a. Evaluate Make a table of values giving the position (x, y) of the basketball after $0,0.25,0.5,0.75$, and 1 second.
b. Graph Use your table from part (a) to graph the parametric equations.
c. Solve The position of the basketball rim is $(15,10)$. The top of the backboard is $(15,12)$. Does the player make the free throw? Explain.
74. ChAllenge The Stratosphere Tower in Las Vegas is 921 feet tall and has a "needle" at its top that extends even higher into the air. A thrill ride called the Big Shot catapults riders 160 feet up the needle and then lets them fall back to the launching pad.
a. The height h (in feet) of a rider on the Big Shot can be modeled by $h=-16 t^{2}+v_{0} t+921$ where t is the elapsed time (in seconds) after launch and v_{0} is the initial vertical velocity (in feet per second). Find v_{0} using the fact that the maximum value of h is $921+160=1081$ feet.
b. A brochure for the Big Shot states that the ride up the needle takes two seconds. Compare this time with the time given by the model $h=-16 t^{2}+v_{0} t+921$ where v_{0} is the value you found in part (a). Discuss the model's accuracy.

MIXED REVIEW FOR TAKS

REVIEW

TAKS Preparation p. 408;

TAKS Workbook

REVIEW

Lesson 3.2;
TAKS Workbook
75. TAKS PRACTICE In the figure shown, $\overline{A B}$ is parallel to $\overline{E D}$. Which equation can be used to find the value of x ? TAKS Obj. 6
(A) $5 x+225=360$
(B) $5 x+235=540$
(C) $7 x+235=360$
(D) $7 x+225=540$

76. TAKS PRACTICE Music recital tickets are $\$ 4$ for students and $\$ 6$ for adults. A total of 725 tickets are sold and $\$ 3650$ is collected. Which pair of equations can be used to determine the number of students, s, and the number of adults, a, who attended the music recital? TAKS Obj. 4
(F) $s+a=725$
$4 s+6 a=3650$
(G) $s+a=725$
$6 s+4 a=3650$
(H) $s-a=725$
$4 s-6 a=3650$
(J) $4 s+6 a=725$
$s+a=3650$

