MODELING LAUNCHED OBJECTS In Lesson 4.5, the function $h=-16 t^{2}+h_{0}$ was used to model the height of a dropped object. For an object that is launched or thrown, an extra term $v_{0} t$ must be added to the model to account for the object's initial vertical velocity v_{0} (in feet per second). Recall that h is the height (in feet), t is the time in motion (in seconds), and h_{0} is the initial height (in feet).

$$
\begin{array}{ll}
h=-16 t^{2}+h_{0} & \text { Object is dropped. } \\
h=-16 t^{2}+v_{0} t+h_{0} & \text { Object is launched or thrown. }
\end{array}
$$

As shown below, the value of v_{0} can be positive, negative, or zero depending on whether the object is launched upward, downward, or parallel to the ground.

EXAMPLE 5 Solve a vertical motion problem

JUGGLING A juggler tosses a ball into the air. The ball leaves the juggler's hand 4 feet above the ground and has an initial vertical velocity of 40 feet per second. The juggler catches the ball when it falls back to a height of 3 feet. How long is the ball in the air?

Solution

Because the ball is thrown, use the model $h=-16 t^{2}+v_{0} t+h_{0}$. To find how long the ball is in the air, solve for t when $h=3$.

$$
\begin{array}{ll}
\boldsymbol{h}=-16 t^{2}+v_{0} t+h_{0} & \text { Write height model. } \\
3=-16 t^{2}+40 t+4 & \text { Substitute } 3 \text { for } \boldsymbol{h}, 40 \text { for } v_{0^{\prime}} \text { and } 4 \text { for } h_{0^{\prime}} . \\
0=-16 t^{2}+40 t+1 & \text { Write in standard form. } \\
t=\frac{-40 \pm \sqrt{40^{2}-4(-16)(1)}}{2(-16)} & \text { Quadratic formula } \\
t=\frac{-40 \pm \sqrt{1664}}{-32} & \text { Simplify. } \\
t \approx-0.025 \text { or } t \approx 2.5 & \text { Use a calculator. }
\end{array}
$$

- Reject the solution -0.025 because the ball's time in the air cannot be negative. So, the ball is in the air for about 2.5 seconds.

Guided Practice for Example 5

10. WHAT IF? In Example 5, suppose the ball leaves the juggler's hand with an initial vertical velocity of 50 feet per second. How long is the ball in the air?
