MODELING LAUNCHED OBJECTS In Lesson 4.5, the function $h = -16t^2 + h_0$ was used to model the height of a *dropped* object. For an object that is *launched or thrown*, an extra term v_0t must be added to the model to account for the object's initial vertical velocity v_0 (in feet per second). Recall that *h* is the height (in feet), *t* is the time in motion (in seconds), and h_0 is the initial height (in feet).

$$h = -16t^2 + h_0$$
 Object is dropped.
 $h = -16t^2 + v_0t + h_0$ Object is launched or thrown.

As shown below, the value of v_0 can be positive, negative, or zero depending on whether the object is launched upward, downward, or parallel to the ground.

 $v_0 > 0$

 $v_0 < 0$

 $v_0 = 0$

EXAMPLE 5 Solve a vertical motion problem

JUGGLING A juggler tosses a ball into the air. The ball leaves the juggler's hand 4 feet above the ground and has an initial vertical velocity of 40 feet per second. The juggler catches the ball when it falls back to a height of 3 feet. How long is the ball in the air?

Solution

Because the ball is thrown, use the model $h = -16t^2 + v_0t + h_0$. To find how long the ball is in the air, solve for *t* when h = 3.

$\boldsymbol{h} = -16t^2 + \boldsymbol{v_0}t + \boldsymbol{h_0}$	Write height model.
$3 = -16t^2 + 40t + 4$	Substitute 3 for h , 40 for $v_{0'}$ and 4 for h_0 .
$0 = -16t^2 + 40t + 1$	Write in standard form.
$t = \frac{-40 \pm \sqrt{40^2 - 4(-16)(1)}}{2(-16)}$	Quadratic formula
$t = \frac{-40 \pm \sqrt{1664}}{-32}$	Simplify.
$t \approx -0.025$ or $t \approx 2.5$	Use a calculator.

▶ Reject the solution −0.025 because the ball's time in the air cannot be negative. So, the ball is in the air for about 2.5 seconds.

GUIDED PRACTICE

ICE for Example 5

10. WHAT IF? In Example 5, suppose the ball leaves the juggler's hand with an initial vertical velocity of 50 feet per second. How long is the ball in the air?