EXAMPLE 2 Solve an equation with one real solution

Solve $25 x^{2}-18 x=12 x-9$.

$$
\begin{aligned}
25 x^{2}-18 x & =12 x-9 & & \text { Write original equation. } \\
25 x^{2}-30 x+9 & =0 & & \text { Write in standard form. } \\
x & =\frac{30 \pm \sqrt{(-30)^{2}-4(25)(9)}}{2(25)} & & a=25, b=-30, c=9 \\
x & =\frac{30 \pm \sqrt{0}}{50} & & \text { Simplify. } \\
x & =\frac{3}{5} & & \text { Simplify. }
\end{aligned}
$$

- The solution is $\frac{3}{5}$.

CHECK
Graph $y=25 x^{2}-30 x+9$ and note that the only x-intercept is $0.6=\frac{3}{5}$. \checkmark

EXAMPLE 3 Solve an equation with imaginary solutions

Solve $-x^{2}+4 x=5$.

$$
\begin{aligned}
-x^{2}+4 x & =5 & & \text { Write original equation. } \\
-x^{2}+4 x-5 & =0 & & \text { Write in standard form. } \\
x & =\frac{-4 \pm \sqrt{4^{2}-4(-1)(-5)}}{2(-1)} & & a=-1, b=4, c=-5 \\
x & =\frac{-4 \pm \sqrt{-4}}{-2} & & \text { Simplify. } \\
x & =\frac{-4 \pm 2 i}{-2} & & \text { Rewrite using the imaginary unit } i . \\
x & =2 \pm i & & \text { Simplify. }
\end{aligned}
$$

- The solutions are $2+i$ and $2-i$.

CHECK Graph $y=-x^{2}+4 x-5$. There are no x-intercepts. So, the original equation has no real solutions. The algebraic check for the imaginary solution $2+i$ is shown.

$$
\begin{aligned}
-(2+i)^{2}+4(2+i) & \stackrel{?}{=} 5 \\
-3-4 i+8+4 i & \stackrel{?}{=} 5 \\
5 & =5
\end{aligned}
$$

Guided Practice for Examples 1, 2, and 3

Use the quadratic formula to solve the equation.

1. $x^{2}=6 x-4$
2. $4 x^{2}-10 x=2 x-9$
3. $7 x-5 x^{2}-4=2 x+3$
